说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 稳定自同构群
1)  Stable automorphism group
稳定自同构群
2)  automorphism group
自同构群
1.
An analysis of sub-simple properties of automorphism groups by a computer;
自同构群的次单性分析及计算机实现
2.
The orders of automorphism groups of some families p-groups;
某一类家族p-群的自同构群的阶(英文)
3)  Automorphism groups
自同构群
1.
Holomorphic vectors and holomorphic automorphism groups of a sort of three-dimensional Hopf manifold;
一类三维Hopf流形的自同构群和全纯向量场
2.
In this paper,The order of automorphism groups of metacyclic inner abelian p-groups are determined when p≠2,and the structure of automorphism groups are also given.
本文确定了亚循环的内交换p-群(p≠2)的自同构群的阶,并给出了其自同构群的结构。
4)  automorphism [英][,ɔ:tə'mɔ:fizəm]  [美][,ɔtə'mɔrfɪzəm]
自同构群
1.
In this paper, we determine explicitly the automorphism of filirom Lie algebra W6, the solvable Lie algebra with nilradical W6, and prove that this solvable Lie algebra has no nontrivial (non-constant) invariant.
文章确定了filiform李代数W6的自同构群,确定了以W6为nil-根基的可解李代数及其唯一性,并且证明了这类可解李代数没有非平凡(即非常数)不变量。
2.
A finite p-group G is called LA-group, if the order of G divides the order of the automorphism group of G.
称有限p-群G是LA-群,如果群G的阶能整除群G的自同构群的阶。
3.
Abstract:Let G be a soluble block-transitive automorphism group of 2-(56,7,1) design D.
设G是设计2-(5~6,7,1)的一个可解区传递自同构群,则G是旗传递的且G■A■L(1,5~6)。
5)  group of automorphisms
自同构群
1.
Meanwhile,the formula about number of order on the group of automorphisms over finitely generated module over Ring Fq[x] is deduced.
在特征为2的域F2上给出n阶矩阵为平方矩阵的充要条件,从而刻划了平方矩阵的特征,求出环Fq[x]上有限生成模的自同构群的阶数公式,由此得到F2上全体平方矩阵的计数公式。
6)  Stable homotopy group
稳定同伦群
补充资料:Frobenius自同构


Frobenius自同构
Frobenius automorphism

E旧映如.自同构〔Fro饭址璐a此加叼和即;中p川免“叮caa盯oMo,中。3MJ C司015群中的一个特殊形式的元素.它在类域论中起关键作用.设L是有限域K的代数扩张,则Fro-比苗璐自同构叭j;定义为甲别认a)二丫,其中a‘L,、二}月(K的元素个数).当L/K为有限扩张时,汽/K生成G司。is群C饱I(L/K).当L/K为无限扩张时,叭/K是G目(L/幻的拓扑生成元.若L〕EOK且IE:KJ<叭则汽厂:二叫众‘,. 设k为具有有限剩余类域工的局部域,K是k的非分歧扩张,则剩余类域扩张的助伙泊i、自同构牧,河以唯一地提升为自同构叭,‘C佃(K/k),,称为非分尽犷攀K/k单Fro恢而比自回汐·设}习一q,吸为K的整数环,p为叹的极大理想,则Fro灰川uS自同构伞叼*由下述条件唯一决定:对任一a‘叹有甄k(a)兰丫(modp).设K/k为局部域的任一Galo地扩张,任一自同构,任G司(K/k)若在K的最大非分歧子扩张上诱导出上述意义下的Froh泊i诏自同构,有时也称为K/k的Frobenius自同构. 设K/k为整体域的Ga】015扩张,p是k的素理想,平是K中在p之上的某一素理想.又设平在K中不分歧,蜘〔Gal(凡/气)是局部域非分歧扩张凡火的Fm-饮泪i璐自同构·如果将6司。is群Gal喝/气)与平在C透1(K/k)中的分解子群等同,则价可看作〔润(K/k)中的元素,这个元素称为对应素理想平的Fro沃浦出自同构.若K八为有限扩张,由取励Tape。密度定理(Che-加扭此v血砒ity小印n沈n)可知,对任一自同构。‘C恤l(K/k),存在无限个在K/k中不分歧的素理想瑕使。二,,.对任一A比l扩张,蜘仅依赖于p,这时价砰己为(p,K/k),称为素理想p的Artin符号(Anins卿比l).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条