说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 张量内变量
1)  tensor valued internal state variables
张量内变量
1.
Based on the Talreja's damage model with tensor valued internal state variables for composites, the constitutive relations with damage of the plane stress problems for the uni-ply plate were derived.
基于Talreja复合材料张量内变量损伤模型,建立了复合材料单层板平面应力问题的损伤本构关系,进而获得了层合板的损伤本构方程及非线性动力学方程,且应用有限差分法和迭代法进行求解。
2.
Based on the Talreja’s damage model with tensor valued internal state variables, the constitutive relations for the plane stress problems of composite uni-ply plates with damage are derived.
基于Talreja张量内变量损伤模型,建立了复合材料单层板平面应力问题的损伤本构关系,进而导出了具初始挠度的考虑损伤效应的复合材料单层板的非线性压屈平衡方程。
2)  strain tensor
应变张量
1.
A note on the accurate expression of strain tensor;
关于壳体有限变形的准确应变张量表达式的一点注记
2.
The influences of deformation and Poisson ratio on the volume ratio under different strain tensor descriptions are studied.
对不同应变张量描述下的体积比受变形程度及泊松比的影响进行了分析,结果表明:在La-grangian应变张量与Almansi应变张量及Eulerian应变张量描述下,假定泊松比不变,大变形时都会出现体积变化反常的现象;在对数应变张量描述下,当泊松比取值0。
3.
The expressions of the Lagrangian-Green strain tensor and the Eulerian strain tensor and their work-conjugate stress tensors,namely,the second Piola-Kirchhoff stress tensor and Cauchy stress tensor,are derived for the beam under axial uniformly tension,and the constitutive relations of these two pairs of work-conjugate stress and strain measures are also presented.
推导了轴向均匀大变形等截面杆的Lagrangian-Green应变张量和Eulerian应变张量以及分别与它们能量共轭的第二类Piola-Kirchhoff应力张量和Cauchy应力张量的表达式,给出了这2对能量共轭的应力应变张量的本构关系式。
3)  tensor transformation
张量变换
1.
Therefore, on the basis of tensor transformation and finite volume method, we developed a numerical calculating method to solve the 3D water coning problem.
通过讨论大裂缝三维水锥问题的数值模拟 ,认定大裂缝的主渗透率方向在大裂缝曲线切向上 ,借助张量变换理论和有限体积法 ,导出了描述有大裂缝的三维气井水锥的离散方程。
4)  deformation tensor
变形张量
5)  Invariant tensor
不变张量
6)  alternating trans formation tensors
混变张量
1.
By means of alternating trans formation tensors,the formula of the fundamental Φrform of surface with generalized IIisometry is obtained.
借助混变张量,得到曲面的第Φr 形式在广义Ⅱ 等距下的公式。
补充资料:变量与变量值
可变的数量标志和所有的统计指标称作变量。变量的数值表现称作
变量值,即标志值或指标值。变量与变量值不能误用。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条