1) J~η-proximal operator
J~η型近似算子
1.
By using J~η-proximal operator technique and the property of fixed point set of set-valued contractive mappings,we prove that under suitable assumptions the solution set of the parametric generalized implicit variational inclusions is nonempty closed and Lipschitz-continuous with respect to the parameter.
运用J~η型近似算子技巧和集值压缩映射不动点集的性质,在适当假设下证明了这类变分包含解集的非空闭性和解集关于参数的Lipschitz连续性。
2) approximate operators
近似算子
1.
On the basis of interior operators, closure operators and approximate operators, the compound and overlapping compound of interior operators, closure operators and approximate operators are studied in reflexives and transitive rough sets.
在内部算子、闭包算子和近似算子概念的基础上,研究了内部算子、闭包算子与自反传递 粗集中近似算子的复合以及交叉复合,得到了它们之间的一些关系。
2.
First the basic ideas and framework of the rough set theory and the different views of knowledge representation in rough set theory were introduced,and then the upper and lower approximate operators definitions were discussed respectively in view of element based,granular based,subsystem based,and probability.
首先阐释粗糙集理论基本体系结构,然后从基于元素、基于粒、基于子系统、概率等多个角度探讨粗糙集理论中上下近似算子的扩展,并介绍了国内外关于粗糙集模型的扩展研究状况,讨论了当前粗糙集理论的热点研究领域,给出了将来需要重点研究的主要问题。
3) approximation operators
近似算子
1.
On covering-based rough approximation operators;
基于覆盖的粗糙近似算子
2.
Constructive and Algebraic Methods of Approximation Operators over Two Universes;
双论域上粗糙近似算子的构造性方法与公理化方法
3.
On the relationship between rough approximation operators and possibility measures;
粗糙近似算子与可能性测度
4) approximation operator
近似算子
1.
Topological properties of approximation operators based on reflexive and symmetric relations;
自反、对称关系下近似算子的拓扑性质
2.
A general formula is given for the approximation operators of fuzzy sets using the triangular norm and its conorm.
为了建立模糊信息系统的约简建立理论基础,该文首先利用三角范数及其余范数给出了模糊集合近似算子的一般形式,进而定义了上、下可定义模糊集合,证明了它们分别构成完全分配格,并对其结构进行了刻画。
3.
But the base algebra systems, on which approximation operators are defined, are confined to Boolean algebra or special Boolean algebras, including set algebra, Nelson algebra(quasi-pseudo Boolean algebra), and atomic Bool.
粗糙集模型的推广是粗糙集理论研究的重要内容 ,该文将分子格引入到粗糙集理论中作为基本代数系统 ,在分子格中定义了一个从分子到一般元素的映射 ,并通过该映射定义了更为一般和抽象的下近似算子 和上近似算子 ▲ 。
5) approximate operator
近似算子
1.
In this paper, upper and lower approximate operators on the finite Boole lattice are defined, their properties are discussed and a rough set construction is set up on the finite Boole lattice.
在有限 Boole格上定义了上近似算子和下近似算子 ,讨论了它们的基本性质 ,从而在有限 Boole格上建立了粗糙集结构。
2.
This paper defines rough lower (L) and upper (H) approximate operatores,and establishes modal logic and rough logic based on rough setstheory.
在介绍Rough集的基础上,定义了Rough下(L)和上(H)近似算子,建立了基于Rough集理论的模态逻辑和Rough逻辑。
3.
After dealing with its approximate operator nature,this paper gave an example to show the application of the two-direction improper singular rough sets with variable precision.
在S-粗集的基础上,提出了双向IS-粗集(two direction improper singular rough sets)的概念,给出双向IS-粗集及变精度双向IS-粗集的数学结构,讨论了变精度双向IS-粗集上、下近似算子的性质,并举例说明了变精度双向IS-粗集的应用。
6) η-proximal mapping
η-近似映射
补充资料:[styrene-(2-vinylpyridine)copolymer]
分子式:
分子量:
CAS号:
性质:学名苯乙烯-2-乙烯吡啶共聚物。微黄色粉末或透明小颗粒晶体。无臭,无味。不溶于水,溶于酸、乙醇、丙酮、氯仿。有抗水、防潮性能,适用于多种药片的包衣等。
分子量:
CAS号:
性质:学名苯乙烯-2-乙烯吡啶共聚物。微黄色粉末或透明小颗粒晶体。无臭,无味。不溶于水,溶于酸、乙醇、丙酮、氯仿。有抗水、防潮性能,适用于多种药片的包衣等。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条