1) dual approximation operators
对偶近似算子
1.
In the constructive approach,one starts from a binary crisp relation R and defines a pair of dual approximation operators R and R in generalized rough vague sets.
在构造性方法中,由一个二元经典关系R出发,构造出广义粗糙Vague集上的一对一元对偶近似算子R,R,并对近似算子R,R的性质进行了讨论。
2) approximations pair
近似偶序对
3) approximate strong duality
强近似对偶
1.
In this paper,the author introduced an approximate augmented Lagrangian function in nonlinear programming,established dual mapping and the related dual problem of this augmented Lagrangian function and obtained the results of approximate strong duality and approximate weak duality of original problems.
介绍了非线性规划中的一种近似增广拉格朗日函数,建立了基于这种增广拉格朗日函数的对偶映射和相应的对偶问题,得到了原问题和对偶问题的强近似对偶和弱近似对偶结果。
4) approximate weak duality
弱近似对偶
1.
In this paper,the author introduced an approximate augmented Lagrangian function in nonlinear programming,established dual mapping and the related dual problem of this augmented Lagrangian function and obtained the results of approximate strong duality and approximate weak duality of original problems.
介绍了非线性规划中的一种近似增广拉格朗日函数,建立了基于这种增广拉格朗日函数的对偶映射和相应的对偶问题,得到了原问题和对偶问题的强近似对偶和弱近似对偶结果。
5) dipolar approximation
偶极子近似
1.
Based on the dipolar approximation, the dipole moment of liquid drop and the local electric field strength are given.
针对气中液滴群在均匀场中的起晕电场计算问题 ,利用偶极子近似讨论了局部电场与浸入相液滴占空比、粒径以及介电常数的关系。
6) approximate operators
近似算子
1.
On the basis of interior operators, closure operators and approximate operators, the compound and overlapping compound of interior operators, closure operators and approximate operators are studied in reflexives and transitive rough sets.
在内部算子、闭包算子和近似算子概念的基础上,研究了内部算子、闭包算子与自反传递 粗集中近似算子的复合以及交叉复合,得到了它们之间的一些关系。
2.
First the basic ideas and framework of the rough set theory and the different views of knowledge representation in rough set theory were introduced,and then the upper and lower approximate operators definitions were discussed respectively in view of element based,granular based,subsystem based,and probability.
首先阐释粗糙集理论基本体系结构,然后从基于元素、基于粒、基于子系统、概率等多个角度探讨粗糙集理论中上下近似算子的扩展,并介绍了国内外关于粗糙集模型的扩展研究状况,讨论了当前粗糙集理论的热点研究领域,给出了将来需要重点研究的主要问题。
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条