1) upper approximate operator
上近似算子
1.
At the same time,both the upper approximate operator and lower approximate operator of the right involution groupoid are defined;these concepts of uppper rough sub-groupoid and upper rough ideal are also given,and their fundamental properties are studied.
在右对合广群中引入了粗糙集的基本理论,定义了右对合广群中的上近似算子和下近似算子,以及上粗子广群与上粗理想等概念,研究了它们的性质,得到了一些有意义的结果。
2) lower and upper approximation operators
上下近似算子
3) approximate operators
近似算子
1.
On the basis of interior operators, closure operators and approximate operators, the compound and overlapping compound of interior operators, closure operators and approximate operators are studied in reflexives and transitive rough sets.
在内部算子、闭包算子和近似算子概念的基础上,研究了内部算子、闭包算子与自反传递 粗集中近似算子的复合以及交叉复合,得到了它们之间的一些关系。
2.
First the basic ideas and framework of the rough set theory and the different views of knowledge representation in rough set theory were introduced,and then the upper and lower approximate operators definitions were discussed respectively in view of element based,granular based,subsystem based,and probability.
首先阐释粗糙集理论基本体系结构,然后从基于元素、基于粒、基于子系统、概率等多个角度探讨粗糙集理论中上下近似算子的扩展,并介绍了国内外关于粗糙集模型的扩展研究状况,讨论了当前粗糙集理论的热点研究领域,给出了将来需要重点研究的主要问题。
4) approximation operators
近似算子
1.
On covering-based rough approximation operators;
基于覆盖的粗糙近似算子
2.
Constructive and Algebraic Methods of Approximation Operators over Two Universes;
双论域上粗糙近似算子的构造性方法与公理化方法
3.
On the relationship between rough approximation operators and possibility measures;
粗糙近似算子与可能性测度
5) approximation operator
近似算子
1.
Topological properties of approximation operators based on reflexive and symmetric relations;
自反、对称关系下近似算子的拓扑性质
2.
A general formula is given for the approximation operators of fuzzy sets using the triangular norm and its conorm.
为了建立模糊信息系统的约简建立理论基础,该文首先利用三角范数及其余范数给出了模糊集合近似算子的一般形式,进而定义了上、下可定义模糊集合,证明了它们分别构成完全分配格,并对其结构进行了刻画。
3.
But the base algebra systems, on which approximation operators are defined, are confined to Boolean algebra or special Boolean algebras, including set algebra, Nelson algebra(quasi-pseudo Boolean algebra), and atomic Bool.
粗糙集模型的推广是粗糙集理论研究的重要内容 ,该文将分子格引入到粗糙集理论中作为基本代数系统 ,在分子格中定义了一个从分子到一般元素的映射 ,并通过该映射定义了更为一般和抽象的下近似算子 和上近似算子 ▲ 。
6) approximate operator
近似算子
1.
In this paper, upper and lower approximate operators on the finite Boole lattice are defined, their properties are discussed and a rough set construction is set up on the finite Boole lattice.
在有限 Boole格上定义了上近似算子和下近似算子 ,讨论了它们的基本性质 ,从而在有限 Boole格上建立了粗糙集结构。
2.
This paper defines rough lower (L) and upper (H) approximate operatores,and establishes modal logic and rough logic based on rough setstheory.
在介绍Rough集的基础上,定义了Rough下(L)和上(H)近似算子,建立了基于Rough集理论的模态逻辑和Rough逻辑。
3.
After dealing with its approximate operator nature,this paper gave an example to show the application of the two-direction improper singular rough sets with variable precision.
在S-粗集的基础上,提出了双向IS-粗集(two direction improper singular rough sets)的概念,给出双向IS-粗集及变精度双向IS-粗集的数学结构,讨论了变精度双向IS-粗集上、下近似算子的性质,并举例说明了变精度双向IS-粗集的应用。
补充资料:凹算子与凸算子
凹算子与凸算子
concave and convex operators
凹算子与凸算子「阴~皿d阴vex.耳阳.勿韶;.留叮.肠疽“‘.小啊j阅雌口叹甲司 半序空间中的非线性算子,类似于一个实变量的凹函数与凸函数. 一个Banach空间中的在某个锥K上是正的非线性算子A,称为凹的(concave)(更确切地,在K上u。凹的),如果 l)对任何的非零元x任K,下面的不等式成立: a(x)u。(Ax续斑x)u。,这里u。是K的某个固定的非零元,以x)与口(x)是正的纯量函数; 2)对每个使得 at(x)u。续x《月1(x)u。,al,月l>0,成立的x‘K,下面的关系成立二 A(tx))(l+,(x,t))tA(x),0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条