1) homogeneous rational fractional function
齐次有理分式函数
2) linear-fractional homogeneous functions
分式线性齐次函数
3) the style of homogeneous function
齐次化函数形式
4) homogeneous polgnomial function
齐次多项式函数
5) rational proper fraction function
有理真分式函数
1.
The indefinite integral formula of rational proper fraction function is worked out by utilizing the relation between derivation and indefinite integral, and indefinite integral is calculated by using derivative.
本文利用求导与不定积分的关系,得出了有理真分式函数不定积分公式,并利用导数计算其不定积分。
6) ratinal fractional function
有理分式函数
1.
Fram teaching, this paper has found out the way of solving inverse laplace transformation of ratinal fractional function by using the method of partial fruction.
从教学出发,论证了用部分分式方法求有理分式函数F(s)拉普拉斯逆变换的方法。
补充资料:二阶线性齐次微分方程
二阶线性微分方程的一般形式为
ay"+by'+cy=f(1)
其中系数abc及f是自变量x的函数或是常数。函数f称为函数的自由项。若f≡0,则方程(1)变为
ay"+by'+cy=0(2)
称为二阶线性齐次微分方程,而方程(1)称为二阶线性非齐次微分方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条