说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Leray-Shauder原理
1)  Leray-Shauder principle
Leray-Shauder原理
1.
The proof of a main result is based on the Leray-Shauder principle.
本文在非共振条件下运用Leray-Shauder原理讨论二阶常微分方程m-点边值问题。
2)  Leray-Schauder principle
Leray-Schauder原理
1.
The existence of solutions to the singular second-order boundary-value problem x″(t)=f(t,x(t))+e(t),0<t<1;x(0)=0,x(1)=∫01a(t)x(t)dt on C1[0,1) was taken into consideration by using Leray-Schauder principle.
运用Leray-Schauder原理考虑二阶奇异边值问题x″(t)=f(t,x(t),x′(t))+e(t),0
2.
We mainly use Leray-Schauder principle to abtain existence theorems for some classes of nonlinear higher-order two-point boundary value problems.
主要利用Leray-Schauder原理研究了几类高阶非线性两点边值问题解的存在性。
3.
On the base of the increasing nonlinear function and by using Leray-Schauder principle,the existence of the solution of a kind of fourth-order two-point bourdary value problem was discussed.
利用Leray-Schauder原理,在非线性增长条件下,讨论一类四阶两点边值问题的解的存在性。
3)  Leray-Schauder theorem
Leray-Schauder原理
1.
Based upon the Leray-Schauder theorem,it is concerned that the singular boundary value problem at the existence of a C~1[0,1) solution x″(t)=f(t,x(t),x′(t))+e(t),t∈(0,1),x′(0)=0,x(1)=kx(η).
运用Leray-Schauder原理考虑了二阶奇异边值问题x″(t)=f(t,x(t),x′(t))+e(t),t∈(0,1),x′(0)=0,x(1)=kx(η)在C1[0,1)上解的存在性。
2.
By using the Leray-Schauder theorem,the existence of solutions for three-point boundary value problems of a class of second order ordinary differential equation is obtained.
运用Leray-Schauder原理,获得了一类二阶非线性常微分方程三点边值问题解的存在性。
3.
By using Leray-Schauder theorem,the optimal sufficient conditions for the existence of the solution of the problemu(4)(t)=f(t,u(t),u″(t)),t∈(0,1)u′(0)=u′(1)=u(0)=u(1)=0are obtained.
应用Leray-Schauder原理,研究四阶两点边值问题u(4)(t)=f(t,u(t),u″(t)),t∈(0,1)u′(0)=u′(1)=u(0)=u(1)=0解的存在性,在两参数非共振条件以及非线性项f满足至多线性增长性条件下给出了此类问题有解存在的最优充分条件,最后举例说明了所获结果。
4)  Leray-Schauder theory
Leray-Schauder原理
1.
Using the Leray-Schauder theory and upper and lower solution method,the existence of solutions for general initial value problem of first order differential equationx′(t)=f(t,x(t)),a.
运用Leray-Schauder原理和上下解方法,讨论了一阶常微分方程广义初值问题x′(t)=f(t,x(t)), a e t∈[0,T],x(0)+∫T0a(t)x(t)dt=c解的存在性。
5)  Leray-Schauder degree principle
Leray-Schauder度原理
6)  Leray-Schauder fixed point theorem
Leray-Schauder不动点原理
1.
The existence of a time-periodic solution is proved by the Galerkin method,Leray-Schauder fixed point theorem andpriori estimates.
利用伽辽金方法、Leray-Schauder不动点原理和先验估计,证明了在带周期外力扰动和周期边界条件的影响下,非线性发展Ginzburg-Landau方程ut=(l+iα)Δu-(k+iβ)u2u+γ+f的时间周期解,其中f(t,x)是一个关于时间变量t的以ω为周期的函数。
2.
We prove the existence of time-periodic solutions to the Galerkin problem by using Leray-Schauder fixed point theorem.
首先利用Leray-Schauder不动点原理证明Galerkin近似问题有时间周期解,然后利用先验估计和紧致性证明近似解是收敛的,并且其极限就是原来问题的时间周期解。
补充资料:[3-(aminosulfonyl)-4-chloro-N-(2.3-dihydro-2-methyl-1H-indol-1-yl)benzamide]
分子式:C16H16ClN3O3S
分子量:365.5
CAS号:26807-65-8

性质:暂无

制备方法:暂无

用途:用于轻、中度原发性高血压。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条