说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Leray-Schauder连续定理
1)  Leray-Schauder continuation principle
Leray-Schauder连续定理
1.
We discuss the three point boundary value problems for a class of n-order differential equations and obtain the existence of at least one solution by using the Leray-Schauder continuation principle.
本文在假设满足Lp-Carathéodory条件下,利用Leray-Schauder连续定理研究了一类n阶三点边值问题解的存在性,并且给出了两个相应的例子来说明本文的结果。
2)  Leray-Schauder theorem
Leray-Schauder定理
1.
We use Leray-Schauder theorem to obtain existence and uniqueness theorems for nonlinear nth-order multipoint boundary value problemsu(n)+f(u(n-2))u(n-1)=g(x,u,u′,…,u(n-1))+e(x),u(i)(ηi)=u(n-2)(0)=u(n-2)(1)=0,0≤ηi≤1,i=0,1,…,n-3in uncontinous condition,correspondence results are extended.
利用Leray-Schauder定理研究了非连续条件下的n阶非线性多点边值问题u(n)+f(u(n-2))u(n-1)=g(x,u,u′,…,u(n-1))+e(x),u(i)(ηi)=u(n-2)(0)=u(n-2)(1)=0,0≤η解的存在性和惟一性,推广了已有的相应结果。
3)  Leray-Schauder contiuation ptinciple
Leray-Schauder连续映像
4)  Leray-Schauder continuation method
Leray-Schauder连续方法
5)  Leray-Schauder fixed point theorem
Leray-Schauder不动点定理
1.
Then the existence and uniqueness of the weak solutions are given by means of Leray-Schauder fixed point theorem.
针对迁移率为m(x,t)的情形,通过引入Nirenberg不等式给出了解的有界性先验估计,并应用Leray-Schauder不动点定理证明了此类Cahn-Hilliard方程弱解的存在惟一性。
2.
A new proof of the Leray-Schauder fixed point theorem is established in this paper.
给出Leray-Schauder不动点定理的一个新证明。
6)  Leray-Schauder continuation theorem
Leray-Schauder延拓定理
1.
By aid of Leray-Schauder continuation theorem,an existence result of solutions is obtained for multi-point boundary value problem of second order ordinary differential equations of the formx″(t)=f(t,x(t),x′(t))+e(t),t∈(0,1)α x(0)-β x′(0)=sum from i=1 to m-2 aix(ξi),γx(1)+δ x′(1)=sum from j=1 to n-2 bjx(τj).
应用Leray-Schauder延拓定理,得到了二阶常微分方程多点边值问题x″(t)=f(t,x(t),x′(t))+e(t),t∈(0,1)αx(0)-βx′(0)=sum from i=1 to m-2 aix(ξi),γx(1)+δx′(1)=sum from j=1 to n-2 bjx(τj)解的存在性,其中f:[0,1]×R2→R满足Caratheodory条件,e(。
2.
The result is obtained by employing Leray-Schauder continuation theorem.
这一结论是通过使用Leray-Schauder延拓定理建立的。
补充资料:[3-(aminosulfonyl)-4-chloro-N-(2.3-dihydro-2-methyl-1H-indol-1-yl)benzamide]
分子式:C16H16ClN3O3S
分子量:365.5
CAS号:26807-65-8

性质:暂无

制备方法:暂无

用途:用于轻、中度原发性高血压。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条