1) the quaternion group
四元数群
2) generalized quaternion groups
广义四元数群
1.
This paper perfectly resolves the CI property,normality and arc-transitive property of connected Cayley graphs of valencies 4 and 5 on generalized quaternion groups Q4pm(p is odd prime,m is positive integer).
完整解决了广义四元数群Q4pm(p为奇素数,m为正整数)的连通4度及5度无向Cayley图的CI性、正规性和弧传递性。
3) generalized quaternion group
广义四元数群
1.
A group G is said to be a generalized quaternion groups,if Q4 n =<a,b│a2n=1,b2=an.
一个有限群称为广义四元数群,若Q4n=,n≥3。
2.
A group G is said to be a generalized quaternion groups,if Q_(4p)=〈a,b|a~(2n)=1,b~2=a~n,a~b=a~(-1)〉,p3.
一个有限群称为广义四元数群,若Q4n=〈a,b a2n=1,b2=an,ab=a-1,〉n 3。
4) quaternion unimodular group
四元数幺模群
5) quaternion group
四元群
6) Klein four group
Klein四元群
1.
It is proved that a group can be written as a subset-union of three proper subgroups if and only if the group has a quotient group isomorphic to the Klein four group.
证明了一个群能表示成三个真子群的并集的必要充分条件是它以Klein四元群为同态象,讨论了可表示为四个真子群的并集的群。
补充资料:四元
1.指科举时代州县﹑府﹑省和廷试四级考试均名列第一。 2.数学名词。元朱世杰《四元玉鉴》以天﹑地﹑人﹑物代四个未知数。相当于现代代数的多元式。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条