1) Riemann-Liouville fractional derivative
Riemann-Liouville导数
2) Riemann-Liouville fractional derivative
Riemann-Liouville分数阶导数
1.
Based on generalized Taylor\'s formula involving the Riemann-Liouville fractional derivative,the new differential transformation for the fractional differential equation with Riemann-Liouville derivative is established and applied to solving the equation with Ruemann-Liouville derivative.
本文在Riemann-Liouville分数阶导数的广义Taylor公式的基础上,建立了求解Riemann-Liouville型分数阶微分方程的微分变换方法。
3) Riemann-Liouville fractional derivative/integral
Riemann-Liouville分数阶导数/积分
4) Riemann-Liouville fractional derivatives and integrals
Riemann-Liouville分数导数和积分
5) Riemann-Liouville fractional derivatives
Riemann-Liouville分数阶微分
6) Riemann-Liouville fractional integrals
Riemann-Liouville分数阶积分
补充资料:[3-(aminosulfonyl)-4-chloro-N-(2.3-dihydro-2-methyl-1H-indol-1-yl)benzamide]
分子式:C16H16ClN3O3S
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
分子量:365.5
CAS号:26807-65-8
性质:暂无
制备方法:暂无
用途:用于轻、中度原发性高血压。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条