1) nonlinear parabolic equations with time delays
时滞非线性抛物型方程组
2) nonlinear delay systems of parabolic partial differential equation oscillation
非线性时滞抛物型偏微分方程组振动性
3) nonlinear parabolic equations
非线性抛物型方程组
1.
Global existence and blow up for a nonlinear parabolic equations;
一类非线性抛物型方程组解的整体存在及爆破
2.
Global existence and blow up problem for a nonlinear parabolic equations
一类非线性抛物型方程组解的整体存在及爆破问题
3.
A study is made on the blowing up problem for the nonlinear parabolic equations u t=Δu m,v t=Δv m, m≥1,with nonlinear boundary conditions u n=u p·v q, v n=u r·v s.
研究了带非线性边界条件 u n =up·vq, u n=ur·vs的非线性抛物型方程组ut =Δum,vt =Δvm(m ≥1)时的爆破问题 。
4) nonlinear parabolic systems
非线性抛物型方程组
1.
Based on triangular meshes, we present a finite volume element framework for a class of two dimensional nonlinear parabolic systems.
讨论基于三角形网格的二维非线性抛物型方程组的有限体积元方法,其中试探函数空间为二次Lagrange元,检验函数空间为分片常数函数空间,对问题的全离散格式证明了最优的能量模误差估计。
2.
The initial regular oblique derivative problem for nonlinear parabolic systems of several second order complex equations with measurable coefficients in a multiply connected domain is discussed.
论述了多连通区域上可测系数的二阶非线性抛物型方程组的初-正则斜微商问题。
5) Nonlinear parabolic system
非线性抛物型方程组
1.
Galerkin alternating-direction procedures are considered for the nonlinear parabolic systems q i(ξ,u)u it-∑kj=1·(a~ ij (ξ,u)u j)+∑kj=1 b~ → ij (ξ,u)·u j=f i(ξ,t,u),1≤i≤k.
利用等参变换、在局部有限单元上近似Jacobi行列式p(x)及系数qi(ξ,u),1≤i≤k等方法,对非矩形区域上非线性抛物型方程组qi(ξ,u)uit-∑kj=1·(a~ij(ξ,u)uj)+∑kj=1b~→ij(ξ,u)·uj=fi(ξ,t,u),1≤i≤k,提出了一类方向交替Galerkin格式,并得到最优的L2-和H1-误差估计。
6) System of delay parabolic equations
时滞抛物型方程组
补充资料:时滞
时滞
time-lags
时滞(ti me一lags)不良环境影响种群的效应,推迟出现的时间。在某种环境条件下,生活史较长的昆虫种群,如果幼虫期密度高,个体间对空间和食物的竞争加剧,使死亡率增加,或由于环境恶化(食物不足,空间拥挤等),使成虫变小,生育力下降,直接影响下一代的增长率;从种群密度增加、密度制约因素作用加强、到种群表现增长率下降之间,几乎相隔1个世代,即几乎时滞1个世代。图1示世代离散、增长率是密度的线性函数的种群,在有时滞和无时滞情况下的种群动态。在反馈作用下的1个世代时滞,使稳定的种群增长型变成周期性振荡或不稳定,这个种群的增长率在开始时比较慢,在超越平衡点后仍继续增长,然后数量骤然下降,一直降到平衡点之下,形成多少带周期性的振荡。时滞可分作用时滞(reactivetime lag)和生殖时滞(r即roduetive time lag)两种。具一世代时滞50的t人‘卫﹃8 10 12 1416世代图l世代离散,增长率是密度线性函数的种群, 有时滞和无时滞时的种群动态起始密度=10,曲线料率=0.011,平衡密度=10氏 (仿C.J.Kre怡) 作用时滞是指环境变化的作用影响种群增长率发生相应的变化的时滞。如果把作用时滞引进逻辑斯蒂方程,可将其加到逻辑斯蒂方程的种群增长还未充,、山.国,*加,了兀一N、二7了个IJ 111口,匀己l叫碑岁弓龟--1于—口门,: \才、ldN、,rK一N(卜别、气气一=r1V}-一‘一下丁--一--}Q tk八夕式中T为作用时滞;K为环境负荷量;N为t时种群大小;r为种群瞬时增长率。由于引进时滞到逻辑斯蒂方程,可产生很多种群增长曲线。一般来说,作用时滞愈长,种群数量愈不稳定(图2)。具有时滞的逻辑斯蒂方程的计算比较复杂,可借助模拟计算技术解决。 生殖时滞由于环境因素影响,使种群生育力下n︺-勺﹄nsod,︺q‘,1 种群大小1 .00 .5时间图2具有不同时滞值的逻辑斯蒂方程 所产生的种群增长模型。曲线上的数字为种群内票增长率只作用时滞。 一般来说,作用时滞愈长,数量更不稳定。 (仿CJ.Krebs)降的效应推迟出现的时滞。常用生育期长度或其他同等的量来度量,也可引进逻辑斯蒂方程中:dN、二厂K勺V(‘钧万了一rlv‘卜‘,七-几甲一J式中g为生殖时滞;T为作用时滞。在种群增长的早期,生殖时滞对降低种群增长率有重要影响。在简单的种群增长模型中,加进时滞以后,可使逻辑斯蒂曲线的稳定渐近线为以下3种可能所取代:①趋向平衡点的减幅振荡;②围绕平衡点的稳定振荡;③平滑的接近平衡密度。此外,某些时滞的结构产生不稳定的增幅振荡,导致种群灭亡。这些结局更合乎自然种群的动态,因此这种模型更加实际。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条