1) quasi-finit comodule category
拟有限余模范畴
1.
In the forth seetion,in the quasi-finit comodule category,through the foundation of AR transpose and the construction of the coNakayana functor,we study their properties in indccomposble injeetive,projective comodule and the ahnost split sequence derived from them,combine the relation between copresentation and comodule,caculate a conerete quiver\'s AR value.
第四节在拟有限余模范畴中,建立了AR变换,构造了余Nakayama函子,研究了它们在不可分解投射,内射余模上的性质。
2) comodule category
余模范畴
3) quasi-finite
拟有限余模
4) covariantly finite subcategories
正变有限子范畴
5) contravariantly finite subcategories
反变有限子范畴
6) covariantly finite sub-categories
共变有限子范畴
补充资料:模范畴
模范畴
modules, category of
模范畴[med‘es,口姆笋灯of;MO八烬益KaTerop姗] 范畴(以忱即巧)mod一R,其对象是有单位元的结合环上的右单位模,而其态射则是R模的同态.这个范畴是Abd范畴(Abel场n以吨。理)的最重要的例子.再者,对每一个小的Abel范畴,总有一个满正合嵌人到某个模范畴内. 如果R=Z,即整数环,则med一R就是Abel群的范畴,而若R二D是一个除环,则m浏一R是D上的向量空间的范畴. mod .R的性质反映了环R的许多重要的性质(见环的同调分类(honlological ela留lfication of nn那)).环的一些重要的同调不变量,特别是,其同调维数(bo伽fo乡。il山拙nsion)是与此范畴相联系的.酬记-R的中心(此nu℃)(即范畴的恒等函子的自然变换的集合)与R的中心同构. 在环论、同调代数与代数K理论中,模范畴的各种不同的子范畴都被研究;特别,讨论了有限一生成的投射R模的子范畴以及与其相关联的K函子(见代数K理论(al罗bmicK刁leory)).模拟noop,.对偶性(Pon切四gind毯山ty),在模范畴的满子范畴之间的对偶性曾被研究过;特别是,研究过有限生成模的子范畴之间的对偶性.例如,曾建立了下述的理论,如果R与S都是Noether环,并且如果在有限生成的右R模与有限一生成的左S模之间有一对偶,则有一个双模:U,使得所给的对偶等价于由函子 HOm,(一,U)与Hom:(一,U)所定义的对偶,自同态环End认与S同构,End:U与R同构,双模U是一个有限一生成的内射余生成元(既作为一个R模又作为一个S模),而环R是半完满环(s删一伴曦双nng).由考虑模的对偶性所出现的最重要的一类环是拟R侧比‘.环(q比巧i一R。比拍迸刀刀g).一个左Ad加环(An五Inng)R是拟f…m饭泊ius的,当且仅当映射 M~E的m:(M,R)在有限一生成的左与右R模的范畴之间定义了一个对偶.【补注】如上面所描述的,由一个双模U所给的对偶称为一个U对偶性(U~d画ty)或森田对偶性(MO-ritad诫ty),也见森田等价(Morita闪ul词~)的补注.周伯埙译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条