说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 广义鞍点问题
1)  generalized saddle point problem
广义鞍点问题
1.
In this paper,we extend the ST decomposition to the generalized saddle point problem and present three block triangular preconditioners.
本文进一步讨论ST分解,并把这种分解推广到广义鞍点问题上。
2)  saddle point problem
鞍点问题
1.
Then we concentrate on the construction of the discrete space of Lagrange multiplier, the space of mortar elements, and the conjugated gradient method for the related saddle point problem.
接着重点讨论了Lagrange乘子的近似空间 ,即粘接元 (mortarelements)空间的建立 ,以及所引起的离散鞍点问题的共轭梯度迭代解法。
2.
To improve the convergence rate of the krylov subspace methods to solve saddle point problems,the block overrelaxation-type preconditioner is presented based on the block overrelaxation-type matrix splitting of the coefficient matrix.
为了提高krylov子空间方法求解大型稀疏鞍点问题的收敛速度,基于系数矩阵的块松弛型迭代分裂,提出了块松弛型预条件子,给出了预处理后系数矩阵的特征值分布和相应的最小多项式。
3.
In this paper,we present a convergent result of the iterative solution methods for a class of generalized saddle point problem,which lowers the condition of the recent results.
给出一类广义鞍点问题迭代解法的收敛性分析结果,降低了目前已有相关结论的适用条件,因而使得相关结果具有更广泛的应用性。
3)  saddle point problems
鞍点问题
1.
In this paper,we prove that in the sense of Baire category,most of the saddle point problems are generic.
本文证明了,在Baire分类的意义下,大多数鞍点问题都是良定的。
2.
Solving saddle point problems for large and sparse systems is applied in many fields, such as constrained optimization,least square problems,image management and so on.
大型稀疏矩阵对应的鞍点问题的求解在很多领域中都有广泛应用,如约束优化问题,最小二乘问题,图像处理等等,对于这类方程是用迭代法进行数值求解的,Uzawa算法和最小残量法(MINRES)是两类求解鞍点线性问题的有效方法。
4)  Generalized saddle point
广义鞍点
1.
Super efficient point in vector optimization problems with set-valued maps characterized by generalized saddle point;
集值向量优化问题超有效点的广义鞍点刻画
2.
By using the properties of generalized saddle points and a separation theorem,a property of generalized saddle points is proved with set separation.
本文研究集值优化问题严有效解的广义鞍点刻画问题。
5)  generalized weak saddle point
广义弱鞍点
1.
This paper establishes one kind of constructions for vector Lagrangian functionals in a class of multiobjective fractional optimal control problems, called generalized Lagrangian functionals, and the relationship between the weak efficiency and generalized weak saddle points of such a kind of generalized Lagrangian functionals is discussed.
给出一类多目标分式最优控制问题的向量 Lagrange泛函的构造 ,称为广义 Lagrange泛函 ,并且讨论弱有效性和这样一种广义 Lagrange泛函的广义弱鞍点之间的关
6)  Generalized mutually furthest points problem
广义共同远达点问题
补充资料:广义
范围较宽的定义(跟‘狭义’相对):~的杂文也可以包括小品文在内。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条