1) generalized complementarity problem
广义补问题
1.
In this paper, by applying the properties of isotone projection cone defined by Isac and some known fixed point theorems for single-valued and set-valued mappings, several existence theorems of solutions for generalized complementarity problem GCP (F, K) and generalized implicit complementarity problem GICP(F,g,K) are proved.
在本文中利用Isac引入的保序投影锥的性质,点值和集值映象的已知不动点定理,对广义补问题GCP(F、K)和广义隐补问题GICD(F,g,K)证明了解的存在性定理。
2) GNCP
广义互补问题
1.
The weak regularity is a sufficient and necessary condition for the convergence of Newton-type method for solving the generalized nonlinear complementarity problem(GNCP).
弱正则性是用Gauss-Newton迭代算法求解广义互补问题超线性收敛的一个充分而必要的条件。
2.
In this paper, we consider the generalized complementarity problems (GNCP), and give some constrained optimization reformulations of it.
对于广义互补问题 ,本文给出了它的约束优化问题的两种转化形式 ,讨论了它们的 KKT点为原问题的解的充分条
3.
In Chapter 2, we mainly establish the error estimation of the GNCP.
本文主要研究多面体锥上的广义互补问题(GNCP)的误差界估计,并提出了一类新的求解GNCP的算法。
3) generalized complementarity problems
广义拟补问题
1.
In this paper,we have established an equivalence between the generalized complementarity problems and the Wie- ner-Hopf equations by using a change of variable technique.
通过改变变量法建立了一类广义拟补问题与Wiener-Hopf方程的等价关系。
4) generalized nonlinear complementarity problems
广义互补问题
1.
The generalized nonlinear complementarity problems are the extension of the classical nonlinear complementarity problems.
广义互补问题是互补问题的推广,它在工农业生产等实际问题中有重要的应用。
5) generalized complementarity problem
广义互补问题
1.
Based on a semi smooth equations reformulation of the generalized complementarity problem,a new algorithm is presented.
基于广义互补问题的半光滑方程组变形 ,给出了求解广义互补问题的一种新算法 。
6) generalized implicit complementarity problem
广义隐补问题
1.
In this paper, by applying the properties of isotone projection cone defined by Isac and some known fixed point theorems for single-valued and set-valued mappings, several existence theorems of solutions for generalized complementarity problem GCP (F, K) and generalized implicit complementarity problem GICP(F,g,K) are proved.
在本文中利用Isac引入的保序投影锥的性质,点值和集值映象的已知不动点定理,对广义补问题GCP(F、K)和广义隐补问题GICD(F,g,K)证明了解的存在性定理。
补充资料:广义特征值问题数值解法
见代数特征值问题数值解法。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条