1) The Spectrum of the Unbounded Linear Operators
无界线性算子的谱
2) unbounded linear injector
单的无界线性算子
1.
By Zorn lemma,it has been proved that there is an unbounded linear injector on any infinite dimensional normed space,therefore it gives that a linear operator which has closed null subspace on Banach space is sometimes unbounded and sometimes bounded.
利用Zorn引理证明了任何无穷维赋范线性空间上都存在单的无界线性算子,从而得出Banach空间上的具有闭的零子空间的线性算子未必有界。
3) unbounded spectral operators
无界谱算子
4) spectrum of nonlinear operator
非线性算子的谱
5) spectrum of a linear operator
线性算子的谱
6) Generalized Spectrum of Linear Operators
线性算子的广义谱
补充资料:有界线性算子
设t:x→y是从赋范空间x到y的线性算子。 如果当x∈x跑遍所有元素,||t(x)||/||x||的上确界存在且有限,则称t是有界线性算子。此处||*||表示范数。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条