1) well-bounded linear operator of type(B)
B型良性有界线性算子
2) well-bounded operator of type (B)
(B)型良有界算子
1.
Gives the special structure of the spectrum of bounded linear operators on a class of indecomposable Σ1e type Banach spaces;shows that there is a Σ1e type Banach space on which there is a well-bounded operator of type (B) such that the spectrum of it is the infinite countable set.
给出一类不可分解的Σe1型Banach空间上有界线性算子的谱的特殊结构,证明了存在某个Σe1型Banach空间使其上某个(B)型良有界算子T的谱σ(T)是可数无限集。
3) well bounded operators
良性有界算子
1.
The theory of well bounded operators has been found many applications and formed deep connections with other areas of mathematics.
良性有界算子在数学的许多领域都有十分重要的应用 ,如应用于斯图姆—刘维尔理论 ,富里叶分析与乘数理论[2 ,3 ] 。
4) bounded linear operator
有界线性算子
1.
Perturbation of bounded linear operator A_(T,S)~(2) in Hilbert spaces;
Hilbert空间有界线性算子A_(T,S)~(2)的扰动分析
2.
The problem about family of bounded linear operator from n×n matrices to itself;
n×n阵列到自身的有界线性算子族问题
3.
We characterize the generalized regular points of f using the three integer-valued (or infinite) indices M(x0),Mc(x0) and Mr(x0) at x0∈E generated by f and by analyzing generalized inverses of bounded linear operators on Banach spaces,that is,if f′(x0) has a g.
用f产生的在x0∈E处的3个整数(或无穷大)值指标M(x0),Mc(x0)和Mr(x0)和分析Banach空间上有界线性算子的广义逆来刻画f的广义正则点,即,如果f′(x0)在从E上到F的有界线性算子组成的Banach空间B(E,F)内有广义逆,且M(x0),Mc(x0)和Mr(x0)中至少有一个是有限,则x0是f的广义正则点的充分必要条件是多重指标(M(x),M(x),M(x))在x点处连续。
5) power bounded operator
幂有界线性算子
6) Almost surely bounded randomlinear operator
a.s有界线性算子
补充资料:良性
①能产生好的结果的:~循环。②不至于产生严重后果的:~肿瘤。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条