1) series of commutator subgroups
换位子群列
2) commutator subgroup
换位子群
1.
We investigate the commutator subgroup of a convergence group,and obtain the relationship between the elementariness of a convergence group and the cardinal number of the fixed point set of its commutator subgroup.
讨论了收敛群的换位子群 ,建立了收敛群的初等性与它的换位子群的不动点集的基数之间的联系 。
2.
Denote by G the commutator subgroup of G .
证明了如下结果:设G是有限群,|G|=pqr,p、q、r为素数,p<q<r,G是G的换位子群,|G|=qr。
3.
On the basis of giving the generators of special linear group SL(n,Zpr),we get the commutator subgroup of GL(n,Zm),by using the Euler′s theorem and the method created by Professor Loo Keng Hua when he investigated the general linear group over division ring.
研究了环Zm上的一类线性群GL(n,Zm),在给出特殊线性群SL(n,Zpr)生成元的基础上,利用欧拉定理和华罗康在研究体上线性群时所创造的方法,得到了GL(n,Zm)的换位子群,该结果进一步加深了对线性群GL(n,Zm)的认识。
3) commutator group
换位子群
4) commutator series
换位子列
5) weak commutator subgroup
弱换位子群
1.
In this paper we discusses the concept of weak commutator subgroup, consider the fundamental properties of weak commutator subgroup, and get the result which weak commutator subgroup is exactly the minimal normal subgroup of normal subgroups with their quotients being nilpotent groups, and so on.
本文给出了弱换位子群的概念,讨论了弱换位子群的性质(性质1-6),得到了弱换位子群恰为使群的商群为幂零群的正规子群之极小者等结
6) n-metacyclic commutative subgroup
n-反换位子群
1.
We obtain a few of properties from definition of n-metacyclic commutative subgroup.
从n-反换位子群的定义出发,得到了它的几条重要性质。
补充资料:换位子群
换位子群
commutatDr subgroup
换位子群[。.muta姗su吨阴p;劝MMyrallT印yun“],导出群(derived grouP),下中心列的第二项 群G的元素的全部换位子生成的子群,见换位子(commutator).G的换位子群通常用[G,G],G‘或玩(G)表示.换位子群是全特征子群(fully一charaCteristicsubgrouP),且包含换位子群的任何子群是正规子群.G对于某正规子群的商群是Abel群,当且仅当这个正规子群包含G的换位子群. 环R的换位子理想(commutatori山汾1 ofaring)是由所有乘积ab(a,b‘R)生成的理想,它也称为R的乎有(square),用[R,R]或R,表示. 以上两个概念都是孚筝矛。群(multi一。perator0一『。uP)G的换位子群概念的特殊情况,这种群被定义成是由所有换位子及形如一al…a。。一bt…b。。+(al+b!)…(a。+氏)。(*)的所有元素生成的理想,其中。是Q中的n元运算,而 a,,…,an,b}.…,氏EG. H.H.B~只州‘,Q A HBaHoBa撰【补注l在环被考虑成算子Q群的情形,换位子(基础交换群的)全是零,于是换位子理想是由全体元素一a,aZ一b,bZ+(a.+aZ)(b,+bZ)=a,bZ+aZbl生成的理想. 更一般地,对全部3种情况,定义两个Q子群A,B的换位子群(理想)[A,B],为所有换位子〔a,b](a‘A,b任B)及所有元素(*)生成的理想,其中al,…,气〔A,b.,…,玩任B. 在环R的情形,有另一个不同的概念,它也用换位子理想(~mutator idcal)的名字,这是由所有换位子ab一ba(a,b‘R)生成的理想.这个理想是关于R到交换环的同态的泛理想,即,若。是这个理想,7r:R~R曲=R八是自然投影,则对R到交换环A的每个同态g:R~A,存在唯一同态了:R曲~A,使得g=g’。兀(g通过兀唯一地分解).这类似于下面的性质:对通常的群,映射G~G。”=G/[G,G}关于G到Abel群的映射是泛映射,见泛I’q题(universal problems).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条