1) principle of backward induction
反向归纳原理
3) forward and backward induction
反向归纳法
1.
By means of forward and backward induction, We establish the inequality (2), where 0<x i≤12 , i=1, 2, .
本文用反向归纳法建立了不等式 (2 ) 。
2.
It is worth mentioning that our technique is still forward and backward induction,and the genuinely elementary proof is different from [2].
用更为简洁的反向归纳法证明了对称函数的一类不等式。
4) arithmetical fandamental theorem
归反原理
1.
The arithmetical fandamental theorem is provedsimply by the principle of inductive-disproof, and some other natural number s proposition can be proved by this princi-ple.
论述了归反原理,作出了算术基本定理的一个简单证明,并指出归反原理还可用于其它有关自然数命题的证明。
5) principle of induction
归纳法原理
6) principle of mathematical induction
数学归纳原理
1.
One of them deals detailedly with the logical relation between the principle of mathematical induction (type I sa well as type I )and the well-ordering principle under a certain condition and the other introduces an axiom concerning the natural numbers and demonstrates the equivalence between it and the system of Peano axioms.
其一详论在一定条件下,Ⅰ、Ⅱ型数学归纳原理及良序原理之间的逻辑关系:另一则提供一个关于自然数集N的公理并论证它与Peano公理系统的等价性。
补充资料:不完全归纳推理
“完全归纳推理”的对称。以关于某类事物中部分对象的判断为前提,推出关于某类事物全体对象的判断做结论的推理。在归纳推理中,完全归纳推理是不多的,不完全归纳推理则是大量的。有两种:(1)简单枚举归纳推理,这是或然性推理;(2)科学归纳推理,这是必然性推理。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条