说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 开型积分公式
1)  open integration formula
开型积分公式
2)  integration formula of product form
乘积型积分公式
3)  integral formula of Cauchy type
Cauchy型积分公式
1.
In this paper, we consider the properties of so_called N_analytic functions, integral formula of Cauchy type and the problem of Riemann boundary value.
研究了N解析函数的性质、Cauchy型积分公式及相应的Riemann边值问题,然后将其结果应用到一类奇异微分—积分复方程的可解性理论中,建立了其特征方程解的积分表示式。
2.
From the integral formula of Cauchy type for bianalytic function this paper established the solvability theory of Riemann s boundary value problem in the class of bianalytic function.
通过对双解析函数建立的 Cauchy型积分公式 ,得到在双解析函数类中 Riemann边值问题一般形式的可解性理论 ,进一步地对一类微分积分方程得出解的表示形
4)  closed integration formula
闭型积分公式
5)  integration formula of boundary type
边界型积分公式
6)  integral formula
积分公式
1.
The new integral formula with weight factors for a strictly pseudoconvex polyhedron with non-smooth boundary;
具有非光滑边界强拟凸多面体带权因子的新积分公式
2.
Integral Formula with Discrete Holomorphic Kernel and ?-Equations on Bounded Domain;
有界域上具有离散全纯核的积分公式及其相应的?-方程
3.
In this paper we analyze the revolver of the curve revolving around the straight line,discuss the calculations of the area and volume of the revolver,get two integral formulas of the calculations of the area and volume,and illustrate the application of the formulas with examples.
针对数学分析中平面上曲线绕平面上任意直线旋转一周而形成的旋转体进行分析研究,运用微元分析法,对旋转体体积及旋转体与过该直线的截平面相交所得面积进行讨论,得到相应的积分公式,并举例说明公式的应用。
补充资料:Cauchy积分定理


Cauchy积分定理
Caudiy integral theorem

  中,也能发现类似的表述.Cauchy的证明中用了导数f‘仁)为连续的附加假设;E .Goursat(123)给出了第一个完整的证明、Cauchy积分定理所表达的解析函数的特性完全刻画了这类函数(见M浓口定理(Morera theo-rem))、因而解析由数的所有基本性质都可由C auchy积分定理推出. 对于平面C中或R止mann曲面上任意的区域D,Cauchy积分定理可表述如F^:如果刀z)是区域D内的正则解析函数,则沿在D内同伦于0的任一可求长闭曲线?〔D,f(习的积分等于零 Cauchy积分定理在多复变量解析函数情形的推广是Cauchy一poin以r己定理(Cauclly一Poln以r己theo-rem):如果j(:)(:二仁气·…:。))是复空间C”(n)l)的区域D内的正则解析函数,则对任一具有光滑边界下二日G的月+1维曲面G任D.有 厂川必二认其中f(习dz是同调微分形式的简写 f(:)d:=力:、,一:。)d:,/】·八d:。.当n“]时,曲面G与域D具有相同的维数:n+]二2月(此即经典Cauchy定理的情形)当n>1时,G的维数比D的维数低:。斗一1<2。亦见解析函数的残数(resi-due of an analyt,c fonctlon);Cau由y积分(Cauchyintegral).【补注】在【21中,Goursat仍假定丫f‘(:)的连续性、很快他就看出如何去掉这个假定,见{AU.〔翅。由y积分定理【〔翅朋山y integ司the吮m;Ko川11毗-Terpa几‘“a,reopeMal 如果f(:)是单复量:在复平面C=C’的单连通域D内的正则解析函数,则f(z)沿D内任一可求长闭曲线,的积分等于零: jf(‘)dz二“· 丫Cauchy积分定理的一个等价叙述是:积分 b jf(:)dz,么”〔D不依赖于域D内定点a,b之间的积分路径的选择.这在本质上是A.L.Cauchy提出这条定理(1825)时的原始表述(见111):在C.F.Gauss的一封信(1811)
  
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条