说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> Cauchy积分公式
1)  Cauchy integral formula
Cauchy积分公式
1.
Cauchy integral formula for complex harmonic functions;
复调和函数的Cauchy积分公式
2.
In this paper,we establish the Cauchy integral formula and Schwarz integral formula,and discuss the sufficiently and necessary condition of B-harmonic function on the hypersphere topological product domains.
建立了超球拓扑积上的Cauchy积分公式和Schwarz积分公式,并进一步讨论了超球拓扑积上B-调和函数的充要条件。
3.
In this paper, by using the Cauchy integral formula on certain distinguished boundary for functions with values in a universal Clifford algebra, the Laurent expansion for LR regular functions with isolated singular points is obtained in the corresponding Laurent domain.
该文由泛 Clifford分析中在特异边界上的 Cauchy积分公式得出了具有孤立奇点的 LR正则函数在其相应的 Laurent域上的 Laurent展式 ,并由此给出了留数的定义 ,得出了类似于经典函数理论的留数定
2)  integral formula of Cauchy type
Cauchy型积分公式
1.
In this paper, we consider the properties of so_called N_analytic functions, integral formula of Cauchy type and the problem of Riemann boundary value.
研究了N解析函数的性质、Cauchy型积分公式及相应的Riemann边值问题,然后将其结果应用到一类奇异微分—积分复方程的可解性理论中,建立了其特征方程解的积分表示式。
2.
From the integral formula of Cauchy type for bianalytic function this paper established the solvability theory of Riemann s boundary value problem in the class of bianalytic function.
通过对双解析函数建立的 Cauchy型积分公式 ,得到在双解析函数类中 Riemann边值问题一般形式的可解性理论 ,进一步地对一类微分积分方程得出解的表示形
3)  higher order Cauchy integral formula
高阶Cauchy积分公式
4)  Buniakowski-Cauchy integral inequality
Buniakowski-Cauchy积分不等式
1.
New popularization and application of Buniakowski-Cauchy integral inequality;
Buniakowski-Cauchy积分不等式的新推广
5)  Cauchy-Schwarz integral inequality
Cauchy-Schwarz积分不等式
6)  Cauchy integral
Cauchy积分
1.
Theoretical proof based on the impedance model and Cauchy integral formula was presented,emulation was performed on various experimental data to verify and illustrate the proposition.
基于Cole-Cole阻抗模型,采用Cauchy积分公式进行了理论分析,并用多组实验数据对理论分析结果进行验证。
2.
With various methods to prove the fundamental theorem of algebra analyzed, this paper use the elementary method, Cauchy integral theorem and the theorem of Brouwer s immovable point to prove the fundamental theorem of Algebra.
对代数基本定理的证明 ,进行了多种方法的分析 ,运用初等方法、Cauchy积分定理和Brouwer不动点定理 ,给出另外 3种方法进行论证 。
补充资料:Cauchy积分


Cauchy积分
Caudly integral

Stieltjes型积分或Cauehy一LebesgUe型积分表达的函数类的特征性质将更为复杂、 设了(:)是有限闭区域万匕任意(1卜解析)的cl类函数,这里,应的边界为逐段光滑的Jordan曲线L·经典公式(1)的如下推广有时也称为Cauchy积分公式(Cauchy,ntegral formula): 卫一f皿2亘上_土{{互亘查旦亚二门6) 2二;子岁一:二少了a万岁一“ (几z、‘:任D. 10,艺任cD.其,丰, 理一:{群十;军},、二着十!。· 。丁“}a若一“”!’‘上述公式似乎在D.Pompelu倒L作咬1912)中第次出现·‘臼也称为pom详,u兮感(pom沐iu formula),Borel一pom详iu兮水(Borel一p()m详iu formula),或Cauchy一Green兮亨(Cauchy一Greenfo即ula),‘臼在广义解析函数论,奇异积分方程以及各种应用问题中都有广泛应用. 设j(:)是闭多圆柱厅,D={:任C”:{:一。}、气}上关于多个复变数:二(:,,…,:。)的正则解析函数.于是,在D的每一点·j(:)可用冬事C“uchy移兮(multiP-le Cauchy一ntegral) 。.、_一生一.f五江丝 f(“)二不二丁.)份赞于(17) (2二丫于岁一:表示,其中了二{心任C”:}C,一。洲=rv,、二1,··‘一{是多圆柱的特征边界,C二(心、,一,否,},dC=d心,一动二,,屯一“二(石l一“、)’,·(心。一几)·公式(17)给出了与单位圆周L二乏:任c:}:一川=;}相似的Cauchy公式,但当。>1时,积分(17)并非展布在多圆柱的整个边界上,而仅仅展布在它的特征边界上一般地,设D=D,X…火D,为C·中的多圆区域一具有光滑边界勿。二{:二(气,):o簇t。毛l}的单连通平面区域D。的乘积;又设T二。乌x二火。D,为D的特征边界,它是。维的光滑流形,公式飞17)也可推广到这种情形. Cauchy积分公式的更为深刻的推广,在多复变解析函数论中显得特别重要;例如往卿公式(Leray fof-mula)(J Leray本人则称它为Cauchy一凡ntapp,e谷感(Cauchy一FantaPPIO formul。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条