1) alternating multilinear mapping
交错多重线性映射
2) multilinear mapping
多重线性映射
1.
In this series of papers, a theory of the strong measure related to a multilinear mapping is studied; a system of the strong multilinear integrals based on the theory is introduced; a theory of the weak integral opposite of the weak measure are set up.
在本系列论文中 ,研究了相应于多重线性映射的强测度论 ;引入基于该测度论的强多重线性积分系统 ;建立了基于弱测度论的弱积分理论 ,这些结果属于多元向量值测度论的范畴 ,其积分模型几乎包含了所有现今广泛应用的积分 。
2.
It is not easy to solve the problem of tensor product multilinear mapping if only matrix algebra knowledge is used.
在解决张量积多重线性映射问题时,只用矩阵代数知识解决问题有些繁琐,而引入结构矩阵来解决张量积多重线性映射问题,不仅能使问题变得更加简单而且更加容易理解接受。
4) canonical multilinear mapping
典范多重线性映射
5) alternative mapping
交错映射
1.
The concepts of alternative mapping as well as top.
本文首先给出集[1,n]上k-次幂等映射的概念,用置换群的循环分解给出集[1,n]上k-次幂等映射的计数公式,接着定义了连象映射和保小映射,不但得到它们的计数公式,还得到一个第2类斯特林数的关系式及保小映射总数指母函数系数的变化趋势,最后给出交错映射及上下置换的概念并给出关于上下置换指母函数简明表达式的一个简单证明。
6) Multilinear map
多线性映射
补充资料:多重线性映射
多重线性映射
multilinear mapping
多重线性映射【浏国目比址叮.n那嗯;uO瓜皿业触Oe 0m6-p姗服“],n重线性映射(n .linearIT以pp吨),多重线性算子(mult正川乏r oP已rator) 从带有么元的交换结合环A上的单式模(unita巧】议对ule)E,的直积fl几IE‘到某个A模F内的关于每个自变量均为线性的映射f,亦即它满足条件 f(xl,二‘,x卜1,ay+bz,x:十1,…,x。)二 =af(xl,…,x卜、,y,x:十,,…,x。)+bf(x,,…,x卜:,z, x.+,,’.‘,X。)(a,b‘A:夕,之任E,,i=l,…,n).在n=2(对应地,。=3)的情况下,称为双线性映射(bilin已lr打么Pping)(对应地,三线性映射).每个多重线性映射 f:nE,~F i二I定义从张量积因几,E‘到F内的唯一线性映射了,使得 ‘Z(x:。,二⑧x。)=f(x:,…,x。),x‘6E,,这里对应f!~了是多重线性映射fl爪,E‘~F的集合到所有线性映射⑧凡.E‘~F的集合内的一一映射.多重线性映射fl几,E,~F自然地组成一个A模. 对称群(s班nr沈川c grouP)S。作用在所有。重线性映射E”~F组成的A模L。(E,F)上: (sf)(xl,…,x。)=f(x:(:),…,x,(。)),这里s任s。,f任L。(E,F),x‘任E.多重线性映射f称为对称的(s抑叱tric),假如对所有:任S。,sf=f;称为斜对称的(skew .5扣扣r川c),假如可=。(s)f,这里按置换s的正负号,。(s)二士1.一个多重线性映射称为变符号的(slgn一铭乃吐堪)(或交错的(日忱mati飞)),如果当对某个i有,xi二x,时,f(x.,…,x。)一0.任何的交错多重线性映射是斜对称的,而如果F中方程Zy=0有唯一解夕=0,则逆命题亦真.对称多重线性映射组成L。(E,F)内一个子模,它自然地同构于线性映射的模L(夕E,F),这里,夕E是E的第n重对称幂(见对称代数(s皿峨沥ca唇腼)).交错多重线性映射组成一个子模,它自然地同构于L(尸E,F),这里A”E是模E的第n重外幂(见外代数(exteriora唇bm)).多重线性映射:、厂一艺:。、.sf称为由f确定的对珍侈孝重线性映射(syn哑减血曰功间垃i众治rn份PP止嗯),而多重线佳映射丢沂艺:。:,。(s)sf称为由f确定的料对移侈多重线性映射(skew一s丫nr叱tr汾沮mul创咏迸mapp吨).对称化(对应地,斜对称化)多重线性映射均为对称的(对应地,交错的),并且,如果在F中对每个c‘F,方程川y=c有唯一解,则逆命题亦真.使任意交错多重线性映射成为斜对称化的一个充分条件是E为自由模(n忱Inodule).参见多孟线性型(mul山hearfonll).A .Jl .01忍口,峨撰陈公宁译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条