说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 幂幺元
1)  unipotent element
幂幺元
2)  unipotent elements
幂幺元;幂单元
3)  idempotent element monoids
幂等元幺半群
1.
Some equivalent conditions out of condition (E′) were given and some equalizer-flat category characters of idempotent element monoids were discussed by using condition(E)and equalizer-flat.
给出了条件(E)的推广即条件(E′)的等价刻画,并利用条件(E′)和均衡平坦性给出了幂等元幺半群的S-系范畴特征,即证明了若S是幂等元幺半群则所有S-系是均衡平坦的,所有S-系满足条件(E′),所有S-系满足条件(E)是等价的。
4)  Unipotent subgroup
幺幂子群
1.
Automorphisms of the unipotent subgroup of the Chevalley group over the integral ring;
整数环上Chevalley群的幺幂子群的自同构
2.
Let U be the upper triangular unipotent subgroup of the general linear group GL(n+1,Z).
设U是整数环Z上一般线性群GL(n + 1,Z)的上三角幺幂子群 ,讨论U的自同构 ,证明了当n≥ 3时 ,U的任一个自同构都可以唯一地表示为图自同构、对角自同构、内自同构、极自同构、中心自同构的乘积 ;当n=1,2 时 ,对 U 的自同构也进行了讨论 。
5)  unipotent semigroup
幂幺半群
1.
The localization of semigroups with cetral idempotents and the smallest unipotent semigroup congruences;
幂等元位于中心的半群的局部化和最小幂幺半群同余
6)  torsion matrices
幺幂矩阵
1.
In the present paper, we consider the problems of the conjugacy classes of the torsion matrices of order p or 2p in GLn(F] and SLn(F) , and we determine the formula of the number of the conjugacy classes in GLn(F] and SLn(F] completely.
本文给出了p阶与2p阶幺幂矩阵在GL_n(F)和SL_n(F)共轭作用下的共轭类个数的递推计算公式。
补充资料:幂等元的半群


幂等元的半群
idempotents, semi -group of

式.幂等元的半群【i山和四把血,胭山.gr0llPof;“朋MnoTe“-功。no刀yll.担na」,幂等元半群(idemPotent semi-gr。叩) 每个元素皆为幂等元(记enlPo忆nt)的半群.幂等元半群亦称为带(恤nd)(这与半群的带(比11dof~一grouP)的概念相容:幂等元半群是单元素半群的带).交换的幂等元半群称为半格(~一扭仗元c);这术语与它在偏序集理论中的应用相容:若对交换幂等元半群S考虑其自然偏序,则元素a,b任S的最大下界正是ab.半格是二元半格的次直积.若半群S满足恒等式尤y=x,xy=y中的一个,则称S为奇异的(sin孚har);在第一种情形,S是左奇异的(left-sin酗ar),或左零半群(~一gro叩of left Zero‘),第二种情形是右奇异的(石乡止.singr血r)或右零半群(s咖一gro叩of rigllt zeros).一个半群称为矩形(既-扭ng口ar)半群,若它满足恒等式义yx二戈(该术语有时在稍广的意义下使用,见【11).对半群S,下列条件是等价的:1)5是矩形半群;2)5是理想单的幂等元半群(见单半群(s加P1e~·gro叩));3)S是幂等元完全单半群(c omplete】y一sirnples洲一grouP);及4)S同构于直积L xR,其中L是左奇异半群而R是右奇异半群.每个幂等元半群是C五成阔半群(Oifford sen卫·gro叩)且分裂成矩形半群的一个半格(亦见半群的带(比nd ofs洲·groups)).这个分裂是幂等元半群的许多性质研究的起点.幂等元半群是局部有限的 幂等元半群已从各种观点得到研究,包括簇论的观点.令所有幂等元半群的簇为见,在【4]一16]中完全地描述了黔的所有子簇的格;它是可数的,分配的,且簇见的每个子簇由一个恒等式确定.这个格可图解如下: II 二,:二J,,:角二,:.二:,, _1 FJ.工V今飞冲匕母丁yr‘yl 艺卜,’=Z,’F仁之子洲叼2盛.丢二月工yZ二yXZ 华‘\\工岁夕zIt, J二y图中对黔中较低层的一些簇给出了与其相应的恒等
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条