说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 非线性反差增强
1)  non-linear contrast enhancement
非线性反差增强
2)  nonlinear enhancement
非线性增强
3)  contrast enhancement
反差增强
1.
The processed image is up to real color, high resolusion and easy to be identified after contrast enhancement and ratio processing.
以高分辨率的QUICKBIRD卫星数据为研究对象 ,经反差增强和比值运算 ,使处理后的图像分辨率高且接近真彩色 ,具有较好的识别效果 ;在图像上均匀布设 1 3个地面控制点 (GCP) ,另选取 3个国家三级控制点参与静态GPS外业实测及内业解算 ,平差后各控制点坐标误差在 1cm左右。
2.
The model controls the extent of denoising and contrast enhancement by setting a parameter, and two image processing technologies are realized.
该模型通过设置参数λ灵活控制去噪和反差增强的程度,实现2种灰度图像处理手段的同步进行。
4)  enhanced contrast
增强反差
5)  optical nonlinearity enhancement
光学非线性增强
1.
The effect of anisotropic microstructure of semiconductor composites on the optical nonlinearity enhancement is investigated.
本文研究了半导体掺杂复合材料微结构的各向异性对材料的光学非线性增强的影响。
2.
Numerical results show that the optical nonlinearity enhancement dependence on the temperature and volume fraction of compo.
数值结果表明,光学非线性增强与温度和组分的体积分数都有关,同时将伴随着共振峰的"蓝移"现象。
6)  non-linear operator
非线性增强算子
1.
A non-linear operator is used to enhance the coefficients of the transform.
利用小波-Contourlet变换良好的多尺度性和多方向性特征,提出一种基于小波-Contourlet变换的图像增强算法,用非线性增强算子对变换的各子带系数做增强处理。
补充资料:半导体非线性光学材料


半导体非线性光学材料
semiconductor nonlinear optical materials

载流子传输非线性:载流子运动改变了内电场,从而导致材料折射率改变的二次非线性效应。④热致非线性:半导体材料热效应使半导体升温,导致禁带宽度变窄、吸收边红移和吸收系数变化而引起折射率变化的效应。此外,极性半导体材料大都具有很强的二次非线性极化率和较宽的红外透光波段,可以作为红外激光的倍频、电光和声光材料。 在量子阱或超晶格材料中,载流子的运动一维限制使之产生量子尺寸效应,使载流子能态分布量子化,并产生强烈的二维激子效应。该二维体系材料中激子束缚能可达体材料的4倍,因此在室温就能表现出与激子有关的光学非线性。此外,外加电场很容易引起量子能态的显著变化,从而产生如量子限制斯塔克效应等独特的光学非线性效应。特别是一些11一VI族半导体,如Znse/ZnS超晶格中激子束缚能非常高,与GaAs/AIGaAs等m一V族超晶格相比,其激子的光学非线性可以得到更广泛的应用。 半导体量子阱、超晶格器件具有耗能低、适用性强、集成度高和速度快等优点,以及系统性强和并行处理的特点。因此有希望制作成光电子技术中光电集成器件,如各种光调制器、光开关、相位调制器、光双稳器件及复合功能的激光器件和光探测器等。 种类半导体非线性光学材料主要有以下4种。 ①111一V族半导体块材料:GaAs、InP、Gasb等为窄禁带半导体,吸收边在近红外区。 ②n一巩族半导体量子阱超晶格材料:HgTe、CdTe等为窄禁带半导体,禁带宽度接近零;Znse、ZnS等为宽禁带半导体,吸收带边在蓝绿光波段。Znse/ZnS、ZnMnse/ZnS等为蓝绿光波段非线性光学材料。 ③111一V族半导体量子阱超晶格材料:有GaAs/AIGaAs、GalnAs/AllnAs、GalnAs/InP、GalnAs/GaAssb、GalnP/GaAs。根据两种材料能带排列情况,将超晶格分为I型(跨立型)、n型(破隙型)、llA型(错开型)3种。 现状和发展超晶格的概念是1969年日本科学家江崎玲放奈和华裔科学家朱兆祥提出的。其二维量子阱中基态自由激子的非线性吸收、非线性折射及有关的电场效应是目前非线性集成光学的重要元件。其制备工艺都采用先进的外延技术完成。如分子束外延(MBE)、金属有机化学气相沉积(MOCVD或MOVPE)、化学束外延(CBE)、金属有机分子束外延(MOMBD、气体源分子束外延(GSMBE)、原子层外延(ALE)等技术,能够满足高精度的组分和原子级厚度控制的要求,适合制作异质界面清晰的外延材料。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条