1)  tail rotor pitchchange servo cylinder
尾桨变距助力器
2)  tail rotor
尾桨
1.
This paper describes a demarcation and decoupling technology of helicopter bearingless tail rotor flexible beam,this technology can be used to solve the problem of flapping bending moment and lag bending moment coupling that encountered in bearingless flexible beam fatigue test,it also can be used to separate each test load component on the section effectively and to reduce the test error.
本文介绍了一种直升机无轴承尾桨柔性梁标定与解耦技术,该技术能有效地解决无轴承尾桨柔性梁在试验中挥舞弯矩与摆振弯矩的耦合问题,并能有效分离截面上各分项试验载荷,减少其试验误差。
2.
Combining a helicopter rotor loads flight testing,the study and application of the tail rotor loads flight testing technology are described,which has achieved the expectation.
结合某型机寿命可靠性动部件载荷实测任务要求,较详细地论述了尾桨动部件飞行载荷测试技术方法研究及应用,达到了预期目的。
3.
A prediction method for the load noise of tail rotors is studied.
对尾桨载荷噪声的预测方法进行了研究。
3)  Stroke oar
尾桨
1.
Using S7-300 PLC as center controller, PⅡ IPC as monitor and SIEMENS SIMOVERT MD inverter as DP slave station to create a PROFIBUS-DP fieldbus control network, according to specification of drive and control system of stroke oar test-bed.
根据尾桨试验台拖动系统的特点及技术要求 ,采用 S7- 30 0 PL C作为中央控制器 ,P 工控机作为监控计算机 ,SIMOVERT MD工程型变频器作为 DP从站 ,构成一个基于 PROFIBU S- DP现场总线控制网
4)  tail-rotor failure
尾桨失效
5)  ducted tail rotor
涵道尾桨
1.
The flow field and performance of a helicopter ducted tail rotor in hovering and sideward flight were analyzed using CFD(Computational Fluid Dynamic) technique.
采用CFD(计算流体力学)方法分析在悬停和侧飞时直升机涵道尾桨的流场与性能。
2.
The shroud at high speed is modeled as an elliptic wing in order to construct a momentum theory method to investigate the aerodynamic characteristics of ducted tail rotor in hover and forward flight.
引入尾流收缩比因子,并将大速度时的涵道等效为圆形机翼,建立了一个适合于直升机悬停和前飞状态涵道尾桨气动特性分析的动量理论方法。
6)  tail rotor hub
尾桨毂
1.
Stainless laminated strips has usually been selected as a load - bearing structure in main rotor hub and tail rotor hub of a helicopter.
拉扭条结构件是直升机主桨毂、尾桨毂通常采用的一种结构承载受力件。
参考词条
补充资料:尾桨
      单旋翼直升机用以平衡旋翼反作用扭矩和实现航向操纵和稳定的尾部螺旋桨,简称尾桨。尾桨的构造与旋翼类似,但没有自动倾斜器。尾桨轴一般垂直于机身对称平面。飞行员通过改变尾桨桨叶的安装角来改变尾桨的水平拉力,从而实现航向操纵。尾桨桨叶多为2~6片,直径最小的仅1米左右,最大的达6米以上。早期的尾桨桨叶多为木制的,20世纪60年代以后多采用金属或复合材料的桨叶。实际应用的尾桨型式有"跷跷板"式、铰接式、万向接头式、无轴承式和涵道风扇式。轻型直升机上常用的双叶尾桨多为跷跷板式。双叶以上的尾桨以铰接式较多,结构与铰接式旋翼类似,不过一般不带垂直铰。个别直升机采用万向接头式尾桨。80年代有些直升机采用全复合材料无轴承式尾桨,结构与无轴承式旋翼类似。此外,少数直升机使用涵道风扇式尾桨,桨叶短而片数多,整个尾桨安装在流线型的环形通道内。这种型式的尾桨尺寸小,使用安全,但悬停及低速飞行时气动效率较低。少数单旋翼直升机不用尾桨,而用尾部侧向喷气或其他方法实现航向稳定和操纵功能。
  
  
  

说明:补充资料仅用于学习参考,请勿用于其它任何用途。