2) left regular band
左正则带
1.
A finite semigroup is an IC abundant semigroup satisfying the left rgularity condition if and only if it is an orthodox superabundant semigroup whose idempotents form a left regular band.
一个有限半群是满足左正则性条件的IC富足半群当且仅当它是一个幂等元形成左正则带的纯整超富足半群,但满足左正则性条件的无限IC富足半群不都是幂等元形成左正则带的纯整超富足半群。
2.
In the paper, a structural theorem of left inverse semigroups is given, which generalizes the standard representations of left regular bands.
作为左正则带的标准表示的推广 ,给出了左逆半群的一个结构定理。
3.
The quasi spined product of an adequate semigroups and a left regular band is introduced here, the quasi spined product structure of type σ semigroups is established.
引进了适当半群和左正则带的拟织积,建立σ型半群的拟织积结构。
3) right regular band
右正则带
1.
By using ρ T,we establish a representation for a right regular band.
借助 ρT 建立右正则带的一种表
4) strongly regular band
强正则带
1.
The relationship among general regular bands,strongly regular bands,perfectly regular bands and normal bands is also determined.
引入了强正则带和完备正则带的概念 ,用强加细半格和完备加细半格分别对它们的结构加以描述 ,并且讨论它们之间以及它们与一般正则带、正规带之间的关系 。
5) Regular *-semibands
正则*-半带
6) regular band
正则带
1.
In this paper,we establish the structure of quasi-adequate semigroups whose band of idempotents is a regular band and in which δ is a congruence.
研究一类以正则带为幂等元集的拟适当半群,给出了这类半群的结构,还考虑了几种特例。
2.
In this paper,we discuss some properties of a band with semilattice inverse transversaland obtain some necessary and sufficient conditions of the band with semilattice inverse transversal tobe a left regular band.
本文讨论了可裂左正则带的一些性质。
3.
In Chapter 1, we investigate quasi-adequate semigroups whose band of idem-potents is a regular band.
第一章,研究了以正则带为幂等元集的拟适当半群,得到了型-W的拟适当半群的结构。
补充资料:凡事豫则立,不豫则废
1.谓做任何事情,事先谋虑准备就会成功,否则就要失败。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条