1) perfectly regular band
完备正则带
1.
Strongly regular bands and perfectly regular bands are respectively introduced and constructed by applying special forms of refined semilattice.
引入了强正则带和完备正则带的概念 ,用强加细半格和完备加细半格分别对它们的结构加以描述 ,并且讨论它们之间以及它们与一般正则带、正规带之间的关系 。
2) complete regular measure
完备正则测度
3) normal complete open riemannian manifold
完备非紧正则黎曼流形
4) completely regular
完全正则
1.
Introducing the concept of Rees matrix semigroups of matrix type,we prove the equivalence of completely simple matrix semigroups and this kind of Rees matrix semigroups, and characterize the minimal ideal of a topological matrix semigroup as well as the completely regular matrix semigroups.
引入矩阵型Rees矩阵半群的概念,证明完全单的矩阵半群等价于矩阵型Rees矩阵半群,进而给出矩阵拓扑半群的极小理想的刻画以及完全正则矩阵半群特别是一些重要类别的群带的刻画。
2.
In the second chapter ,we give the definition of the normal subset of aπ-regular semigroup S , the normal equivalence on E(S) and then we give the description of completely regular congruence pairs of S.
本文主要利用同余的核和迹讨论π-正则半群上的完全正则同余对,并把结果推广到GV-半群和E-反演半群上。
5) Perfect principle
完备性原则
6) Asset capital completing rules
完备化原则
补充资料:凡事豫则立,不豫则废
1.谓做任何事情,事先谋虑准备就会成功,否则就要失败。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条