1) regular *-
正则*-
1.
After introduce general information of inverse and regular semigroups, we survey the study works on the construction of regular semigroups with inverse transversals as well as on congruence lattices; summarize split transversal, orthodox transversal, regular *-transversal and adequate transversal, which were put forward recently as generalizations of inverse transversal.
总结了作为逆断面的推广的可裂断面,纯正断面,正则*-断面和恰当断面。
2) regular
[英]['reɡjələ(r)] [美]['rɛgjəlɚ]
正则
1.
The Nonexistence of (4,8)-Regular Maximal Planar Graph on 12 Vertives;
12阶的(4,8)-正则极大平面图的不存在性
2.
Study on the(k,l)-Regular Maximum Planar Graph on n>12;
阶n>12(k,l)-正则极大平面图
3.
On generalized Moore-Penrose inverses of regular morphisms;
关于正则态射的广义Moore-Penrose逆
3) regularity
[英][,reɡju'lærəti] [美]['rɛgjə'lærətɪ]
正则
1.
An electrochemical machining problem is discussed and its regularity results of a free boundary is obtained.
主要讨论了一类电加工问题,得到其自由边界的有关正则性结果。
2.
A new family of symbolic function with special scaling coefficients was presented and it was verified by using recurrence,constructing and cut-supplement method that the wavelets constructed had a regularity index of order r+1 and the orthogonality.
给出一类尺度系数为固定排法的新的二元小波的符号函数,通过递推以及构造的思想,运用割补的方法验证所构造出的小波具有r+1阶正则指数及正交性。
3.
In this paper,a new regularity in L-fuzzy topological space is given.
研究了L-fuzzy拓扑空间中的正则问题,引入了一种新的正则,证明了这种正则有可乘性、L-好的推广、遗传性、拓扑不变性等重要性质。
4) right π inverse a regular
a正则
5) regularity
[英][,reɡju'lærəti] [美]['rɛgjə'lærətɪ]
正则规则
1.
Implementing MMDR Using Deep-first Node-regularity Growing and Shrinking Algorithm;
纵向环正则规则长入与后缩的MMDR算法
6) cadlag modifications
正则修正
1.
The local martingales of Llog +L-integrals possess cadlag modifications.
Llog+L-可积局部鞅有正则修正。
补充资料:非正则奇点
非正则奇点
irregular singular point
非正则奇点[i川铆山r应粤山r脚向t;Ilpper”,p.四oeo6翻、,,] 出自线性常微分方程解析理论的一个概念.设A(t)为nxn矩阵,它在t。笋的的有孔邻域内是全纯的,且在t。处有一奇点. 这时,点t。称为方程组 交=注(t)x(*)的奇点.非正则奇点有两个不等价的定义.按照第一个定义,t。称为(*)的非正则奇点,如果A(。)在亡。处具有阶数高于l的极点(见微分方程解析理论(analytic theoryofd迁比ren垃alequa石。朋)).按照第二个定义,t。称为(*)的非正则奇点,如果不存在数a>0,使得当t沿射线方向趋向于t。时,每个解x(t)的增长不比}t一t。!一“快(见〔31).情况t。=的,可通过变换t~t一’,化为情况t。二0.非正则奇点有时称为强奇点(例如,见E七朋d方程(Bessel闪皿石。n)).解在非正则奇点的一个邻域内可以作渐近展开;H.Poinca记最早研究了这个问题(【l」).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条