1) left seminoral band
左半正则带
2) left regular band
左正则带
1.
A finite semigroup is an IC abundant semigroup satisfying the left rgularity condition if and only if it is an orthodox superabundant semigroup whose idempotents form a left regular band.
一个有限半群是满足左正则性条件的IC富足半群当且仅当它是一个幂等元形成左正则带的纯整超富足半群,但满足左正则性条件的无限IC富足半群不都是幂等元形成左正则带的纯整超富足半群。
2.
In the paper, a structural theorem of left inverse semigroups is given, which generalizes the standard representations of left regular bands.
作为左正则带的标准表示的推广 ,给出了左逆半群的一个结构定理。
3.
The quasi spined product of an adequate semigroups and a left regular band is introduced here, the quasi spined product structure of type σ semigroups is established.
引进了适当半群和左正则带的拟织积,建立σ型半群的拟织积结构。
3) left regular semigroups
左正则半群
1.
In ChapterⅡ,several equivalent conditions and simple nature of left regular semigroups are given.
本文主要研究了左正则半群,正则子集以及GV-半群。
4) Regular *-semibands
正则*-半带
5) left seminormal band
左半正规带
1.
A left seminormal orthodox semigroup is an orthodox semigroup whose idempotents form a left seminormal band.
左半正规纯正半群是幂等元集形成左半正规带的纯正半群 。
6) left(right) regular ordered semigroup
左(右)正则序半群
补充资料:宽禁带半导体(见半导体的能带结构)
宽禁带半导体(见半导体的能带结构)
wide gap semiconductor
习一’平叼能带结构。‘J~正J“、二二,,Conauctor见半
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条