1) Volterra discrete-distributed type delay-integro-differential equations
Volterra离散-分布型延迟积分微分方程
2) Volterra delay-integro-differential equations
Volterra型延迟积分微分方程
1.
Volterra delay-integro-differential equations(VDIDEs) arise widely in scientific fieldssuch as physics ,biology,ecology,control theory and so on.
Volterra型延迟积分微分方程(VDIDEs)广泛运用于物理学,生物学,生态学及控制论等科学领域,延迟积分微分方程通常很难获得理论解的解析式,因此研究这类方程的数值方法是十分必要的。
3) Volterra integral equations with delay
Volterra延迟积分方程
1.
This paper is concerned with the numerical stability of one-leg θ-methods for nonlinear Volterra integral equations with delay.
本文研究Volterra延迟积分方程单支θ-方法的数值稳定性,结果表明:当1/2≤θ≤1 时,单支θ-方法是全局稳定的,当1/2<θ≤1时,单支θ-方法是渐近稳定的。
4) nonlinear Volterra delay-integro-differential equation with neutral type
非线性中立型Volterra延迟积分微分方程
5) Volterra type integro-differential-difference equation
Volterra型积分微分差分方程
1.
Singularly perturbed nonlinear boundary problem of second order Volterra type integro-differential-difference equation;
二阶Volterra型积分微分差分方程的非线性边值问题的奇摄动
2.
The existence and uniqueness and asymptotic estimates of solution for nonlinear boundary value problem of Volterra type integro-differential-difference equation is studied by means of differential inequality theories.
利用微分不等式理论研究了二阶Volterra型积分微分差分方程非线性边值问题的解的存在性。
6) Volterra integro-differential equation
Volterra积分微分方程
1.
The hp-discontinuous Galerkin time-stepping method is discussed for quasilinear Volterra integro-differential equations with weakly singular kernels.
用hp-时间间断Galerkin方法讨论拟线性带弱奇异核的Volterra积分微分方程。
2.
This paper deals with a new existence theory for positive periodic solutions to a kind of nonautonomous Volterra integro-differential equations by employing a fixed point theorem in cones.
该文通过使用锥不动点定理,研究了一类非自治Volterra积分微分方程周期正解的一个新的存在性理论,把一般结果应用于几类具时滞的生物数学模型时,改进了一些已知结果,并得到了一些新的结果。
3.
In this paper,by means of constructing a new Liapunoves function,we obtain some sufficient conditions of stability and boundedness of Volterra integro-differential equation and extend some results in -
该文构造新的Liapunov泛函,得到判定Volterra积分微分方程的解有界、零解稳定的充分条件,推广文[1]—[3]中相应的结果。
补充资料:离散分布
离散分布
discrete dislribution
离散分布[业口创七业州h面阅;八。e即eTooe paeu衅八e-月e““el 集中在样本空间(,双nPling印毗)Q的有限或可数无限点集上的概率分布.更确切地,设。,,田:,…是样本点且 p,“p(田:),i=l,2,二(l)满足条件 P:)0,乞P;=l(2)关系式(1)和(2)完全定义了一个空间O上的离散分布,因为任意集A CO的概率测度可用下式定义 p(通)二艺,:. {‘:。.‘月1相应地,如果对随机变量X(田),以概率1有有限个或可数无限个不同的值x‘具有概率几=p{以X(。)二{x小则称X(田)的分布是离散的.对分布在实直线上的情形,分布函数F(:)二艺、.:x<二}八在点:,有跳跃p:=F(x‘+0)一F(x*),且在区间[x‘,x‘十:)上是常数(如果xl
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条