1) Volterra type integro-differential equation
Volterra型积分微分方程
1.
Singular perturbation of Volterra type integro-differential equation for nonlinear boundary value problems;
利用微分不等式理论研究了二阶Volterra型积分微分方程非线性边值问题的解的存在性。
2) Volterra type integro-differential-difference equation
Volterra型积分微分差分方程
1.
Singularly perturbed nonlinear boundary problem of second order Volterra type integro-differential-difference equation;
二阶Volterra型积分微分差分方程的非线性边值问题的奇摄动
2.
The existence and uniqueness and asymptotic estimates of solution for nonlinear boundary value problem of Volterra type integro-differential-difference equation is studied by means of differential inequality theories.
利用微分不等式理论研究了二阶Volterra型积分微分差分方程非线性边值问题的解的存在性。
3) impulsive Volterra-type integro-differential equation
Volterra型脉冲积分-微分方程
1.
The first-order impulsive Volterra-type integro-differential equations with anti-periodic and nonlinear conditions are discussed,and the existence and uniqueness theorems for their solutions are also established by contructing a pair of special upper and lower solutions.
对在反周期及非线性条件下的一阶Volterra型脉冲积分-微分方程进行了研究,通过构造特殊的上下解,得到了解的存在唯一性理论。
4) Volterra-Hammerstein type integrodifferential equation
Volterra-Hammerstein型积分微分方程
1.
The present paper covers nonlinear boundary value problem for general second order Volterra-Hammerstein type integrodifferential equationis studied by using upper and lower solution and obtained existence theorems.
本文利用上下解方法研究了一般的二阶Volterra-Hammerstein型积分微分方程非线性边值问题 u″=f(t,u,T_1u,T_2u,u′),L(u(0),u′(0))=0,R(u(1),u′(1))=0, [T_1u](t)=φ_1(t)+integral from n=0 to t(K_1(t,s)u(s)ds),[T_2u](t)=φ_2(t)+integral from n=0 to 1(K_2(t,s)u(s)ds),给出了解的存在性定理。
5) Volterra delay-integro-differential equations
Volterra型延迟积分微分方程
1.
Volterra delay-integro-differential equations(VDIDEs) arise widely in scientific fieldssuch as physics ,biology,ecology,control theory and so on.
Volterra型延迟积分微分方程(VDIDEs)广泛运用于物理学,生物学,生态学及控制论等科学领域,延迟积分微分方程通常很难获得理论解的解析式,因此研究这类方程的数值方法是十分必要的。
6) Volterra integro-differential equation
Volterra积分微分方程
1.
The hp-discontinuous Galerkin time-stepping method is discussed for quasilinear Volterra integro-differential equations with weakly singular kernels.
用hp-时间间断Galerkin方法讨论拟线性带弱奇异核的Volterra积分微分方程。
2.
This paper deals with a new existence theory for positive periodic solutions to a kind of nonautonomous Volterra integro-differential equations by employing a fixed point theorem in cones.
该文通过使用锥不动点定理,研究了一类非自治Volterra积分微分方程周期正解的一个新的存在性理论,把一般结果应用于几类具时滞的生物数学模型时,改进了一些已知结果,并得到了一些新的结果。
3.
In this paper,by means of constructing a new Liapunoves function,we obtain some sufficient conditions of stability and boundedness of Volterra integro-differential equation and extend some results in -
该文构造新的Liapunov泛函,得到判定Volterra积分微分方程的解有界、零解稳定的充分条件,推广文[1]—[3]中相应的结果。
补充资料:线性椭圆型偏微分方程和方程组
线性椭圆型偏微分方程和方程组
inear elliptic partial differential equation and system
算子(1)的阶数是偶的,且对任意一对线性无关向量七和七’,多项式(关于T) 艺a。(x)(古+:心‘)“ !区卜m恰有m’=m厂2个带负虚部的根及带有同样数目的正虚部的根,则称算子(l)是真椭圆型的(properlyel-如出).当n)3时,任一椭圆型算子均是真椭圆型的,因此这个定义本质上仅对n=2时提出的. 在线性椭圆型偏微分方程理论中,利用方程右端项及边界条件的范数得到解的范数的先验估计方法起着重要的作用.C.H.EepHunre俪(见f6])开始系统地使用这些估计,较近的发展要归之于J.Schauder(见【7」).schauder估计关注于区域D内具有H61der连续系数的二阶线性椭圆型偏微分方程的解,且有两种形式.第一形式的估计(“内”估计)是在任何紧集KCD上利用suP}川及方程右端项的HOlder常数和模得到所含的直到二阶的导数和它们的H6】der常数的估计.而第二形式的估计(“直到边界”的估计)关注于边值问题.在此,同样一些量被估计了,但是在问题中的区域的闭包内进行,并且在估计中出现边界条件右端项的范数. Scha比ler估计已进一步推广到一般线性椭圆型偏微分方程和边值问题(见【71).这些估计的导出是基于位势理论.借助于单位分解,对它们可给出其局部特性,并且事情就化为这样一些奇异积分算子范数的估计,在内估计中此奇异积分算子表示为和基本解相联系的函数的一个卷积,而在直到边界的估计中则是与在某标准区域内相应边值问题的G代犯n函数相联系的函数的卷积.这些估计最早是在HOlder空间C“的度量下得到的,它们已推广到C仗汕leB空间评;(L,估计),并且是对广义解. 对于强椭圆型算子存在称为G脚婉不等式(G遏r-由瑶袖闪回lty)的先验估计,这个不等式是用另外方法得到的.它处于对研究边值间题的一个基本处理方法的中心(Hjlberl空间方法), 在线性椭圆型偏微分方程理论中,基本解处于一个重要的地位.对具充分光滑系数的算子(1),其基本解(仙幻田1℃nial solution)定义为满足条件 了“‘,(、)‘(;,,)‘;一,(,),对所有,‘C:的函数J(、,y)二J,(*).从广义函数理论的观点来讲,这意味着 Jy“占y,其中右端是Din‘的占函数. 线性椭圆型偏微分方程的基本解对这样一些方程是存在的二带有解析系数的方程(于是它们本身是解析的),具无穷次可微的系数的方程(于是它们属于C。类的)以及许多另外一些方程,这些方程的系数具有较弱的限制.对于由最高阶爪=Zm’项组成的常系数椭圆型算子L。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条