说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 延迟微分-积分方程
1)  delay integro-differential equation
延迟微分-积分方程
2)  delay integro differential equations
延迟积分微分方程(DIDEs)
3)  stiff delay integro-differential equations
刚性延迟积分微分方程
1.
This paper is concerned with the B-convergence of one-leg methods for stiff delay integro-differential equations(DIDEs).
本文研究刚性延迟积分微分方程单支方法的B-收敛性,结果表明:A-稳定的单支方法是B-收敛的,其B-收敛阶等于其经典相容阶。
4)  delay integro-differential equations
延迟积分微分方程
1.
Linear θ-methods are applied to nonlinear delay integro-differential equations,in which the integral part is obtained by the repeated trapezoidal formula.
将线性θ-方法用于求解非线性延迟积分微分方程,其中积分部分采用复化梯形公式计算,获得了方法渐近稳定的条件。
2.
Nondelay integro-differential equations (IDEs) arise widely in many fields such as Physics, Biology, Medical Science, Engineering, Economics etc.
非延迟积分微分方程(IDEs)广泛出现于物理、生物、医学及经济等领域,其数值算法及理论研究至今已延续了二十几年,大量优秀成果已见诸各类科技文献或应用于实际工程问题中。
5)  Volterra delay-integro-differential equations
Volterra型延迟积分微分方程
1.
Volterra delay-integro-differential equations(VDIDEs) arise widely in scientific fieldssuch as physics ,biology,ecology,control theory and so on.
Volterra型延迟积分微分方程(VDIDEs)广泛运用于物理学,生物学,生态学及控制论等科学领域,延迟积分微分方程通常很难获得理论解的解析式,因此研究这类方程的数值方法是十分必要的。
6)  time-variable delay integro-differential equation
变延迟积分微分方程
1.
The Steady-State Solutions for a class of nonlinear stiff time-variable delay integro-differential equations is studied.
研究一类非线性刚性变延迟积分微分方程,讨论此类方程解析解的稳定性,分别给出了方程解全局稳定和渐近稳定的一个充分条件,证明当α+β+γ2κ21τ<0时,非线性刚性变延迟积分微分方程类GRI(α,β,γ,κ)是全局稳定和渐近稳定的。
补充资料:积分微分方程


积分微分方程
integro-differential equation

积分微分方程【加峡卿~由压翻即位叭闰.柱阅;舰.印。-皿.例卜peH姗~oe邓aBHe皿。e」 在微分和积分两种运算符号下都包含未知函数的一个方程.积分方程和微分方程也是积分微分方程. 线性积分微分方程(U几浓r intef卿~d正rerelltial eqUa-tion).设了是给定的一个变量的函数,令 , L·[Ul三答、;‘(‘)U(‘,(x),M夕【Ul二,瓦q,(x)U‘”(y)是带有[a,b1上充分光滑的系数p万和q,的微分表达式,且设K是正方形汇a,blx【“,b]上充分光滑的一个已知函数.形如 b L、。U〕一“丁K(x,,)M,。U ld,+,(x)(,)的一个方程称为线性积分微分方程;又是一个参数.如果(1)中当夕>x函数K(x,夕)二0,则(1)称为带可变积分限的积分微分方程;它可以写成 ::[。]一、丁、(x,,)、,。。]以,+f(x)(2) 0的形式.对(I)和(2)可以提Ca川ly问题(Cauchyproblem)(求满足U(’)(戊)=e‘(i二o,l,…,l一1)的解,这里。*是给定的数,l是L:【U」的阶数,且:盯a,b』),以及各种边值问题(例如,周期解问题).很多情况下(见[3],[4]),对(1)和(2)的间题能够简化,或者甚至可分别地化成第二类Fredholm积分方程(见Fr司比bn方程(Fredhohn叫Uation))或翎t~方程(VOherra eqUa幻o幻).同时,对积分微分方程很多特殊现象产生了,而这些现象对微分或积分方程是不典型的. 最简单的非线性积分微分方程(non一址℃肚访把孚。-dit免rential闪Uation)有形式 打U(x)一、JF(x,,,U(,),…,U‘“,(,,)d,+f(x)·压缩映射原理(conti刁ctingrr以Pp吨pnnciPle),Sd.u-der法(Schauder nr山闭),以及其他的非线性泛函分析方法,用于研究这种方程. 对积分微分方程,也可以研究解的稳定性,本征函数展开,按小参数的渐近展开等问题.偏积分微分方程和带重积分的积分微分方程在实践中经常遇到.BOltZ盯讯nn方程和KO力MoropoB一凡Uer方程是其中的例子.‘什江J吊锐”诚”万程是有慈义的,例如在人口动力学中(fAZ」).偏积分微分方程,即作为积分和偏微分算子两者的自变量出现的多元函数的方程是有价值的,譬如在连续统力学中(【Al],!A3」).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条