1) qasi-NCP-function
类NCP函数
1.
Second, a qasi-NCP-function is applied in complementarity problems.
其次将一种类NCP函数用于互补问题,当类NCP函数的参数趋于零时我们就可以得到互补问题的解。
2) NCP-function
NCP函数
1.
The paper gives out a NCP-function; in the paper it is applied to derivative-free method, we can increase the speed of arithmetic.
提出了一种新的NCP函数,并将它应用于自由导数方法,达到了提高算法速度的目的。
2.
The algorithm is a non-interior smoothing algorithm based on an NCP-function.
给出了一个求解三维弹性有摩擦接触问题的新算法,即基于NCP函数的非内点光滑化算法。
3) slack NCP function
弱NCP函数
4) NCP-function
NCP-函数
1.
It is well known that the NCP-functions can be used to reformulate a nonlinear complementarity problem(NCP) as a nonsmooth system of equations.
通过NCP-函数,非线性互补问题可以转化为求解一个非光滑方程组,利用光滑逼近函数可以用一个光滑方程组逼近该非光滑方程组。
5) NCP function
NCP函数
1.
In the implementation,each complementary condition is reduced to an equation by means of so-called NCP function to solve,the discrete structural optimization problems wi.
把离散变量结构优化设计问题转化为一般的0-1规划问题,进一步把该问题转化为一个带有互补约束的优化问题,利用NCP函数,最终得到待以求解的连续优化问题。
2.
A NCP function and smoothing methods are used to convert the optimality conditions of linear programming into a smooth system of equations, and a non-interior point path following algorithm is developed.
利用NCP函数和光滑化方法将线性规划的K-K-T条件化为一个光滑方程组,构造了一个非内点原-对偶路径跟踪算法,并分析了其全局及局部收敛性;同时通过计算标准线性规划考题,验证了它的可行性及有效性。
3.
In this paper,we define a piecewise linear NCP function and propose a filter QP-free infeasible method with this NCP function for constrained nonlinear opti- mization problems.
本文定义一个3-分片线性的NCP函数,并对非线性约束优化问题,提出了带有这分片NCP函数的QP-free非可行域算法。
6) Fischer-Burmeister NCP Function
Fischer-Burmeister NCP函数
补充资料:函数逼近,函数类的极值问题
函数逼近,函数类的极值问题
ions, extremal problems in function dasses approximation of ftinc-
】f,r,(r’)一f(r,(r‘’)}《M】r’一r“}“(r’,,“。I一1,!])的f任Cr!一1,l]组成的函数类,则对于n一1次代数多项式子空间贝了在!一1,l]上所作的最佳一致逼近,下列关系式成立: 悠二E‘MH。,”‘”)‘一粤,‘6) ,、_一二,二,,,,、~刀、M,二、。,,r,、忽”厂‘““‘M附rH“,贝:’‘一誉{’·‘万一‘’‘““‘,‘7, r=l,2,…,将这些结果与周期情形下的相应结果进行比较是有所裨益的.当,=1时,(6),(7)的右端分别等于M凡和M人r+1.如果放弃对最佳逼近多项式的要求,那么就可以获得较强的结果,这些结果实质上改善了在!一1,l]端点处的逼近并保持了整个区间上的最佳渐近特征.例如,对任何f6MH‘,存在代数多项式序列Pn以t)任灾矛,使得当n~的时,下列关系式在t6!一1,l]上一致成立:、f(!)一。。,‘)、·:{{;杯}“二‘一,!- =E(MHa,哭聋)。【(l一tZ)a·‘2+o(l)1.对M评百,(r=1,2,…)也有类似的结果(见【川).关于(最佳及插值型)样条逼近给定在区间上函数类的问题,若干精确及渐近精确的结果(主要是对于低阶样条)已公诸于世(见1151). 就(积分度量下的)单边逼近而言,关于上述函数类用多项式和样条进行最佳逼近的误差估计也已得到了一系列精确的结果(见【14]).在推导这些结果的过程中,实质上利用了最佳逼近在锥约束下的对偶关系. 对给定的函数类叨,寻求其(固定维数的)最佳逼近工具将导致确定所谓的宽度(widih)问题,亦即确定(参考(l),(3)) 心(,之,幻=运fE(叭,贝,)x, 贝即 d沁(叭,X)==运f者(叭,叽、),, 田阳(其中下确界取自X的所有N维子空间灾N(及其平移)),以及确定实现这些下确界的(最佳)极子空间问题.心与d万的上界可由E(叨,灾)x和g(叭,叭)x分别给出,对于具体的子空间贝,来说,E(绷,灾)x和扩(绷,哭N)x是已知的.宽度问题中的主要困难是获取下确界.在某些场合下,可借助于拓扑中的Borsuk对映定理丈见18』)而得到这些下确界.在用(。一1阶三角多项式)子空间,荔一,或(关于结点人司。亏数为1的。阶样条)子空间s皿解决函数类M吼及周期函数类wrH“的最佳逼近问题时,已知的上确界E(叭,巩、)x几乎在所有的情况下同时也就是这些函数类的心值.此外,对周期函数类还有姚。一1=姚。.特别有(见[7],【8],【1 51,【16」)dZ,l(附妥,C)=dZ。(W蕊,C)二dZ。一(W下.L一)= =dZ。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条