1) mesocompact-mapping
闭Lindelf映射
2) Lindelf mapping
lindelf映射
3) closed map
闭映射
1.
In this paper, we discuss the relationships between closed maps and closed filters which is closely related with Gabriel topologies.
在Quantale中讨论了与Gabriel拓扑密切关联的闭滤子,给出了闭滤子与闭映射之间的相互确定关系。
2.
To obtain the function and imbedding properties about relative countable tightness spaces,in this paper the question whether the relative countable tightness space can be adversely preserved by a closed map is studied by means of function and imbedding theories.
为了得到相对可数紧度空间的映射及嵌入性质,借助映射方法和紧化理论讨论了相对可数紧度空间被闭映射逆保持问题及嵌入紧空间问题,得到了相对可数紧度空间被闭映射逆保持的一个充分条件、局部紧的可数紧度空间可嵌入紧空间的几个充分条件以及某一类局部紧空间在任意紧化中不具有可数紧度等结果。
3.
Meanwhile,the paper finds out the relationship between prequantale morphism & the operation of a prequantale and obtains that a closed map of prequantales is a necessary & sufficient condition for a prequantale morphism.
找到了Prequantale中态射与蕴涵运算的关系,得到了Prequantale上的一个闭映射是态射的充要条件。
4) mapping closure
映射封闭
1.
It is also found that the results from the mapping closure model and the counterflow model are very close.
评估了映射封闭模型、对撞流模型、来自均匀湍流PDF输运方程的模型和一个唯象模型。
5) closed mapping
闭映射
1.
Pretopological molecular lattices and open mappings and closed mappings between them;
预拓扑分子格以及它们之间的开映射和闭映射
2.
This paper proved that spaces with σ - hereditarily closure preserving pseudobase be preserving by closed mapping.
证明了具有σ-遗传闭包保持伪基的空间被闭映射保持。
3.
The spaces with σ-HCP-k networks or with σ-WHCP-k networks have following properties: (1) hereditability; (2) under closed mappings are preserved; (3) locally summation theorem; (4) melization theorem.
具有σ-HCP-k网或具有σ-WHCP-k网的空间有以下性质:(1)遗传性;(2)在闭映射下被保持;(3)局部和定理;(4)度量化定理。
6) weakly closed mapping
弱闭映射
1.
Deepen the open mapping theorem,define the closed mapping and the weakly closed mapping under untithesis,and also discuss some of their related properties.
深化算子的开映射定理,对偶地定义了算子的闭映射与弱闭映射,并讨论了相关的若干性质。
补充资料:闭映射
闭映射
dosed mapping
y‘Y的集合是。离散的.【补注】闭映射的概念可引出空间的上半连续分解(uPper semi一continuous de00刀。详招ition of a sPace)的概念,这就是空间X的分解E,它使得商映射q:X~X/E是闭的. 在俄文文献里,!A]表示集合A的闭包,所以在这一条目里,!f一1川盯是在空间肛中纤维f一y的闭包(亦见集合的闭包(d沉ure ofaset)).闭映射[d.犯d mappi叱:3a袱。yToe OT06pa‘e姗e] 一个拓扑空间到另一个拓扑空间的映射,使得每个闭集的象仍是闭集.连续闭映射类在一般拓扑学及其应用中起着重要的作用.连续闭紧映射称为完满映射(perfe以maPPing).不空间上的连续映射f:X~Y(f(X)=Y)是闭的,当且仅当在内艺耽班网四B意义下(上连续)分解{f一’y:y“Y}是连续的,或者对X中每个开集U,集合f枉{y“y:f一’yeu}是U中开集.后一个性质是上半连续(u pper semi一continuous)多值映射定义的基础.也就是说了是闭的,当且仅当它的(多值)逆映射是上连续的.Hausdorff紧统到Hausdo盯空间上的任何连续映射是闭的.不空间上的任何连续闭映射是商映射;反之不成立.平面到直线上的正交投影是连续的开的,但不是闭的.类似地,并不是每个连续闭映射都是开的.如果f:X~Y是连续的并且是闭的,X,Y完全正则,那么,对任何点y“Y,了一’y=叮注川刀X.这里口x是s加e一亡曲紧化(stone一亡ech comPaC断-cation),了甲X~刀Y是这个映射到X和Y的stone一八ch紧化上的连续扩张;在正规空间类里,其逆也是正确的.在连续闭映射之下,象保持了下述拓扑性质:正规性;族状正规性;完全正规性;仿紧性;弱仿紧性.而完全正则性和强仿紧性在连续闭映射—甚至在完满映射-—之下未必保持.在连续闭映射下,前象未必保持上述性质.关于这一点需要说明:在连续闭映射之下,点的前象未必是紧的,尽管在很多情况下,连续闭映射和完满映射之间只有很小的差别.如果f是度量空间X到满足第一可数性公理的空间Y上的连续闭映射,那么y是可度量化的,并且对每个y任Y,前象f勺的边界是紧的.如果f是度量空间X到不空间Y上的连续闭映射,那么,使得f一净非紧的所有点
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条