3) idempotent-generated semigroup
幂等元生成半群
4) Maximal idempotent-gererated subsemigoups
极大幂等元生成的正则子半群
5) generator of Abelian group
交换群的生成元
6) generator of an Abelian group
阿贝耳群的生成元;交换群的生成元
补充资料:半群的生成算子
半群的生成算子
generatmg operator of a semi-group
闭包的一个扩张·它亦称为T(t)的广冬丰感攀矛(罗-理晓山戏月脚ela血90详盼扣r). 在使反常积分 了:(、)劝(3) 0收敛的所有x任x的集合D,上,对于Re义>。,我们定义算子 ;(*)一殃!一T(·)汕,其中口是半群T(t)的型.这个算子具有下列性质: l)R(又)D,C=D,; 2)R(又)x一R(拜)x=(召一又)R(又)R(拼)x; 3)R(又)(万一A。)x=x,x‘D(Ao); 4)(双一滩)R(又)戈=x,xeD,门XO. 如果积分(3)对任何x‘X绝对收敛,那么当且仅当T(t)x兰0(x〔X)蕴含x=0时,生成算子A存在;算子R(劝有界,而且如果X=X0,那么它与A的预解式(n乏。IVent)一致:域。为闭(即A二A。)的充分必要条件是,对所有xeXO, 恤上 t~ot; 在算子半群的理论中,基本问题是建立起算子半群的性质与它的生成算子的性质之间的关系,后者通常是借助于R(劝来表示的,半群的生成算子【群世”白犯q珍m姗ofa胭111一驯川p;即003.月二川一翻ooepaTop no。”pyn,。】 一个作用于复加朋山空间X上的线性算子半群(~一罗)UPsof。详份仍玲)T(t)(0
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条