1) Linear and Semilinear
线性与半线性
2) linear semigroup
线性半群
1.
The paper first obtains the L2 -apriori estimates for the solutions of two kinds of autocatalytic models under Dirichlet boundary conditions, and then, using the properties of linear semigroup and delicate calculations, the estimates of the maximal norms are obtained, therefore, the global existence of the solutions is proved.
然后利用线性半群的有关性质及精细计算得到了解的最大模估计,从而证明了两类三次自催化模型在Dirichlet边界条件下整体解的存在性,并进而证明了第一类模型的最大吸引子的存在性。
2.
Using the aprior estimate and the property of linear semigroup, the global existence of the Neumann problem for one kind of biological depletion model is proved, and the maximal attractor of the solution operator in continuous function space is obtained.
利用先验估计和线性半群的性质证明了生物学中的一类衰减模型Neumann问题整体解的存在性 ,并同时得到了其解算子在连续函数空间的最大吸引子的存在性 。
3) semilinear
半线性
1.
Convergence and Multiscale Asymptotic Expansion for Semilinear Parabolic Equation with rapidly Oscillating coefficients;
具有震荡系数的半线性抛物型方程的多尺度渐近展开及其收敛性分析
2.
Global Existence for Semilinear wave Equations in Exterior Domain;
外区域上半线性波动方程解的整体存在性
3.
Existence and Uniqueness of Solution of a Class of Coupled Semilinear Schrdinger Equations;
一类半线性耦合Schrdinger方程组解的存在唯一性
4) semi-linear
半线性
1.
A singularly perturbed boundary value problem for second order semi-linear systems;
一类二阶半线性系统的奇摄动边值问题
2.
A Singular Perturbation to Robin Boundary Value Problem of Semi-linear ODF of Second Order;
二阶半线性常微分方程Robin边值问题的奇摄动
3.
By introducing the decomposition and two-quadratic isoparametric transformation for second order semi-linear elliptic equation with curved boundary,the corresponding discrete variational formulation is derived and four-order multiparameter asymptotic expansions of the error are obtained for the numerical solution that obtained by splitting extrapolation by finite element.
针对曲边界上的二阶半线性椭圆方程,进行了区域分解和双二次等参数变换,构造出了相应的离散变分形式并利用有限元分裂外推求其数值解的数值计算方法,得到了数值解误差的四阶多参数渐近展开式。
5) semi-linear group
半线性群
1.
It is proved that under certain conditions finite linear groups and symplectic groups over finite fields of p elements can be linearly embedded into semi-linear groups and semi-linear symplectic groups over the same ground fields respectively,which improve the corresponding classical embedding theorem.
证明了p元有限域上的有限线性群和辛群在某些条件下可线性地嵌入到该基域上的半线性群和半线性辛群中,所得结果改进了相应的经典嵌入定理。
6) Semi linearized
半线性化
补充资料:半导体非线性光学材料
半导体非线性光学材料
semiconductor nonlinear optical materials
载流子传输非线性:载流子运动改变了内电场,从而导致材料折射率改变的二次非线性效应。④热致非线性:半导体材料热效应使半导体升温,导致禁带宽度变窄、吸收边红移和吸收系数变化而引起折射率变化的效应。此外,极性半导体材料大都具有很强的二次非线性极化率和较宽的红外透光波段,可以作为红外激光的倍频、电光和声光材料。 在量子阱或超晶格材料中,载流子的运动一维限制使之产生量子尺寸效应,使载流子能态分布量子化,并产生强烈的二维激子效应。该二维体系材料中激子束缚能可达体材料的4倍,因此在室温就能表现出与激子有关的光学非线性。此外,外加电场很容易引起量子能态的显著变化,从而产生如量子限制斯塔克效应等独特的光学非线性效应。特别是一些11一VI族半导体,如Znse/ZnS超晶格中激子束缚能非常高,与GaAs/AIGaAs等m一V族超晶格相比,其激子的光学非线性可以得到更广泛的应用。 半导体量子阱、超晶格器件具有耗能低、适用性强、集成度高和速度快等优点,以及系统性强和并行处理的特点。因此有希望制作成光电子技术中光电集成器件,如各种光调制器、光开关、相位调制器、光双稳器件及复合功能的激光器件和光探测器等。 种类半导体非线性光学材料主要有以下4种。 ①111一V族半导体块材料:GaAs、InP、Gasb等为窄禁带半导体,吸收边在近红外区。 ②n一巩族半导体量子阱超晶格材料:HgTe、CdTe等为窄禁带半导体,禁带宽度接近零;Znse、ZnS等为宽禁带半导体,吸收带边在蓝绿光波段。Znse/ZnS、ZnMnse/ZnS等为蓝绿光波段非线性光学材料。 ③111一V族半导体量子阱超晶格材料:有GaAs/AIGaAs、GalnAs/AllnAs、GalnAs/InP、GalnAs/GaAssb、GalnP/GaAs。根据两种材料能带排列情况,将超晶格分为I型(跨立型)、n型(破隙型)、llA型(错开型)3种。 现状和发展超晶格的概念是1969年日本科学家江崎玲放奈和华裔科学家朱兆祥提出的。其二维量子阱中基态自由激子的非线性吸收、非线性折射及有关的电场效应是目前非线性集成光学的重要元件。其制备工艺都采用先进的外延技术完成。如分子束外延(MBE)、金属有机化学气相沉积(MOCVD或MOVPE)、化学束外延(CBE)、金属有机分子束外延(MOMBD、气体源分子束外延(GSMBE)、原子层外延(ALE)等技术,能够满足高精度的组分和原子级厚度控制的要求,适合制作异质界面清晰的外延材料。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条