说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 半线性椭圆
1)  semilinear elliptic
半线性椭圆
1.
This paper treats of the second order semilinear elliptic system of the form -Δu=f1(v),-Δv=f2(u),x∈Rn(n≥3).
本文研究如下形式的半线性椭圆方程组:-Δu=f1(v),-Δv=f2(u),x∈Rn(n≥3)。
2.
In this paper, we consider positive classical solutions of some semilinear elliptic equations on R+(n ≥ 3) with Neumann boundary conditions.
本文研究 R+(n ≥ 3) 上带有 Neumann 边值条件的的半线性椭圆方程的经典正解。
2)  Semilinear elliptic equation
半线性椭圆方程
1.
A necessary condition on existence of non-trivial strong solution to the semilinear elliptic equation with the first eigenvalue, Involving the critical Sobolev exponent, and so on;
带第一特征值具临界指数的半线性椭圆方程非平凡古典解存在的必要条件等
2.
Multiple solutions for a semilinear elliptic equation in exterior domain;
外部区域上半线性椭圆方程的多解
3.
The positive solutions of a class of semilinear elliptic equation;
全空间上半线性椭圆方程的正解
3)  Semilinear elliptic problems
半线性椭圆问题
4)  semilinear elliptic equations
半线性椭圆方程
1.
The maximum principles for functions which are defined on solutions of semilinear elliptic equations u+f(x,u,q)=0(q=|u|~2)subject to Dirichlet boundary conditions u=0 were studied by using Hopf s maximum principle,the estimate of gradient q was obtained.
运用Hopf极值原理讨论了一类具有Dirichlet边界条件u=0的半线性椭圆方程Δu+f(x,u,q)=0(q=|u|2)的解的某个函数的极值原理,利用该结论获得了解的梯度q的估计。
2.
Firstly, the author investigates a class of semilinear elliptic equationsExistence and multiplicity of solutions are studied by the variational methods and some analysis techniques.
本论文首先研究一类半线性椭圆方程用变分法和一些分析技巧研究其解的存在性和多重性。
5)  semilinear elliptic equations
半线性椭圆型方程
1.
In this paper,the existence of bifurcation of semilinear elliptic equations -△u=λf(x,u, D u)was mainly discussed.
讨论了一类半线性椭圆型方程 -△u=λf(x ,u ,Du) 的正解分歧存在性 。
2.
In this paper,the author discuss the existence of nontrivial solutions of semilinear elliptic equations with the nonlocal boundary value problems with critical sobolev exponents by critical point theory,thus expand the research range on the boundary value problems.
本文利用临界点理论,研究一类具Sobolev临界指数的半线性椭圆型方程非局部边值问题解的存在性,从而扩大了边值问题的研究范围。
3.
In chapter 2,I consider a class of semilinear elliptic equations:Where Ω is a bounded domain in R~N (N≥2) , and Using the super.
本文研究一类奇异半线性椭圆型方程的Dirichlet问题正的古典解的局部存在性及其正则性以及一类含对流项的二阶半线性椭圆型方程爆破解的局部存在性。
6)  semilinear elliptic equation
半线性椭圆型方程
1.
Explosive solutions of a class of semilinear elliptic equation;
一类半线性椭圆型方程的爆破解
2.
On blowup solutions for a class of semilinear elliptic equations;
关于一类半线性椭圆型方程的爆破解
3.
On semilinear elliptic equations and systems
关于半线性椭圆型方程和方程组的研究(英文)
补充资料:线性椭圆型偏微分方程和方程组


线性椭圆型偏微分方程和方程组
inear elliptic partial differential equation and system

算子(1)的阶数是偶的,且对任意一对线性无关向量七和七’,多项式(关于T) 艺a。(x)(古+:心‘)“ !区卜m恰有m’=m厂2个带负虚部的根及带有同样数目的正虚部的根,则称算子(l)是真椭圆型的(properlyel-如出).当n)3时,任一椭圆型算子均是真椭圆型的,因此这个定义本质上仅对n=2时提出的. 在线性椭圆型偏微分方程理论中,利用方程右端项及边界条件的范数得到解的范数的先验估计方法起着重要的作用.C.H.EepHunre俪(见f6])开始系统地使用这些估计,较近的发展要归之于J.Schauder(见【7」).schauder估计关注于区域D内具有H61der连续系数的二阶线性椭圆型偏微分方程的解,且有两种形式.第一形式的估计(“内”估计)是在任何紧集KCD上利用suP}川及方程右端项的HOlder常数和模得到所含的直到二阶的导数和它们的H6】der常数的估计.而第二形式的估计(“直到边界”的估计)关注于边值问题.在此,同样一些量被估计了,但是在问题中的区域的闭包内进行,并且在估计中出现边界条件右端项的范数. Scha比ler估计已进一步推广到一般线性椭圆型偏微分方程和边值问题(见【71).这些估计的导出是基于位势理论.借助于单位分解,对它们可给出其局部特性,并且事情就化为这样一些奇异积分算子范数的估计,在内估计中此奇异积分算子表示为和基本解相联系的函数的一个卷积,而在直到边界的估计中则是与在某标准区域内相应边值问题的G代犯n函数相联系的函数的卷积.这些估计最早是在HOlder空间C“的度量下得到的,它们已推广到C仗汕leB空间评;(L,估计),并且是对广义解. 对于强椭圆型算子存在称为G脚婉不等式(G遏r-由瑶袖闪回lty)的先验估计,这个不等式是用另外方法得到的.它处于对研究边值间题的一个基本处理方法的中心(Hjlberl空间方法), 在线性椭圆型偏微分方程理论中,基本解处于一个重要的地位.对具充分光滑系数的算子(1),其基本解(仙幻田1℃nial solution)定义为满足条件 了“‘,(、)‘(;,,)‘;一,(,),对所有,‘C:的函数J(、,y)二J,(*).从广义函数理论的观点来讲,这意味着 Jy“占y,其中右端是Din‘的占函数. 线性椭圆型偏微分方程的基本解对这样一些方程是存在的二带有解析系数的方程(于是它们本身是解析的),具无穷次可微的系数的方程(于是它们属于C。类的)以及许多另外一些方程,这些方程的系数具有较弱的限制.对于由最高阶爪=Zm’项组成的常系数椭圆型算子L。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条