说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 几乎无偏估计
1)  Almost unbiased estimator
几乎无偏估计
2)  almost unbiased ridge estimator
几乎无偏岭估计
1.
A semiparametric regression model is considered,and the almost unbiased ridge estimators(AURR) of both parameters and nonparameters is introduced without a restrained design matrix.
提出了半参数回归模型的几乎无偏岭估计,并与岭估计进行了比较,在均方误差意义下,几乎无偏岭估计优于岭估计,然后讨论了有偏参数的选取问题,最后,用模拟算例和实际应用说明了几乎无偏岭估计的有效性和可行性。
3)  the Almost Unbiased Unified Biased Estimator
几乎无偏统一有偏估计
4)  almost unbiased generalized ridge estimator
几乎无偏广义岭估计
5)  Almost Unbiased Generalized Liu Estimator
几乎无偏广义Liu估计
6)  unbiased estimation
无偏估计
1.
[Results] The values monitored were of logarithmic normal distribution; unbiased estimations of mean and standard deviation of MLE were 34.
[结果]该现场劳动卫生测定资料服从对数正态分布;MLE均值和标准差无偏估计分别为3 4。
2.
By using the theory of judgement as a starting point the condition of unbiased estimation was offered so as to obtain the unbiased estimation of the parameter when loss was strictly convex .
本文主要从判决理论的观点出发,给出使用无偏估计的条件,求参数的无偏估计,在损失为严凸的情况下,先找一个完全统计量,再找任一无偏估计^g( X) ,计算条件期望 E(^g| T) 即可。
3.
Unbiased estimation performance for finite snapshots is discussed in this paper.
关于累量域估计的研究以前主要着重于渐进性能的研究,包括渐近无偏估计及渐近方差。
补充资料:无偏估计量


无偏估计量
unbiased estimator

无偏估计里【训挽”目巴山旧奴甘;uecMe山.。二oue~] 数学期望等于被估计的量的统计估计最(statist派destin卫tor).假设随机变量X取值于样本空间(王,黔,尸。)(e任0);拟根据X的实现估计函数j:0~。,f是从参数集O到某个集合O的映射;选统计量T=T(X)作函数f(0)的估计量.如果对于一切e‘O,统计量T满足 〔。{T}一丁T(二)己尸。(二)一f(。), 王则称T为函数f(0)的无偏估计量(皿b此ed estjlll主-tor).常称无偏估计量无系统误差. 例1.设随机变量X.,…,戈的数学期望同为日,即 E。{X,}二·一〔。{Xn}二口.这时统计量 T一c IX:+…+几戈,cl十…+c。一l是数学期望日的无偏估计量.特别地,观测值的算术平均值X二(x、+…十戈)/n是口的无偏估计量.在该例中f(口)三小 例2.设XI,…,戈是独立服从同一概率分布的随机变量,其分布函数为F(x),即 户{X,O, 、--一,“Jk!由于E{X}=口,故观测值X本身就是其数学期望口的无偏估计量.同样,例如统计量X(X一1)是函数f(田二扩的无偏估计量.一般,统计量 厂rl=X(X一1卜·(X一+l),r=1,2,…是函数f(的一口r的无偏估计量.特别地,由此可见,统计量 T(X)=l+艺(一l)rXI·, r~!是函数f(0)=(l+口)一’(0<口0)的同一PoisS0n分布,其母函数 g:(口)=exP{0(z一l)}是整解析函数,从而有唯一无偏估计量.这时,X=X,十…十X。是充分统计量,服从参数为”口的Pois-son分布.如果T(X)是g:(的的无偏估计量,则它应满足无偏性方程 E。{T(X)}=夕:(口)=e”‘,一”.由此可见一,、、一{‘誉)(;)*(卜青)一,若。、、、、T(xl二之八 七o,其他即参数为X和1/n之二项分布的母函数,是Poisson分布母函数的无偏估计量. 例6一9表明,在实际中相当常见的情形下,如果局限于无偏估计类,则正是由于无偏估计量的概念,使求最优估计量的问题变得容易解决.A.H.K朋-Morope日(【1」)研究了建立无偏估计的问题,特别是参数未知时建立正态分布函数的无偏估计量的问题.无偏估计量更一般的定义属于E.址加mnn.按E.玩h-Inann的定义(见[21),参数0的统计估计量T=T(X)关于损失函数L(口,T)称为无偏的(unb此ed),如果对于一切口,口‘任0,有E,,IL(日’,T(X))})E‘,{L(0,T(X))}·此定义的变形见13].在相当宽的条件下,10.B.JI扣l-皿K及其学生(见【4〕)证明了最优无偏估计量与损失函数无关.
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条