说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 广义KdV-Burgers方程
1)  the generalized KdV-Burgers equation
广义KdV-Burgers方程
2)  generalized Burgers-KdV equation
广义Burgers-KdV方程
3)  generalized compound KdV-Burgers equation
广义组合KdV-Burgers方程
1.
Conditional stability of the solitary wave solutions for the generalized compound KdV equation and generalized compound KdV-Burgers equation;
广义组合KdV方程与广义组合KdV-Burgers方程孤波解的条件稳定性
2.
In this paper, the numerical methods for the initial-boundary problem of the generalized compound KdV-Burgers equation are investigated.
本文研究了广义组合KdV-Burgers方程初边值问题的数值解法。
4)  KdV-Burgers equation
KdV-Burgers方程
1.
The new solitary wave solutions to KdV-Burgers equation;
KdV-Burgers方程的新的孤波解
2.
Exact solutions to the KdV-Burgers equation and KdV-Burgers-Kuramoto equation;
KdV-Burgers方程和KdV-Burgers-Kuramoto方程的精确解
3.
The new solitrary wave solutions of the KdV-Burgers equation
KdV-Burgers方程的新孤波解
5)  Burgers Kdv equation
Burgers-Kdv方程
1.
By way of appling the extended form of homogeneous balancing method to nonlinear evolution equation of the constant coefficient, and to nonlinear development of variable coefficient, this paper obtains, as examples, Burgers Kdv equation with constant coefficient as well as solitary solution and solution-like solutions to the Kdv equation with variable coefficient.
将齐次平衡法的展开式应用于常系数的非线性演化方程和变系数的非线性发展中 ,作为例子求得了常系数的Burgers-Kdv方程和变系数的Kdv方程的孤子解和类孤子
6)  Generalized Burgers equation
广义Burgers方程
1.
Dynamic bifurcation for the generalized Burgers equations
广义Burgers方程的动态分歧(英文)
2.
An iterative method for solving the generalized Burgers equation
求解广义Burgers方程的一种迭代方法(英文)
3.
The nonclassical symmetry method due to Bluman and Cole is developed to study similarity reductions of the generalized Burgers equation.
讨论了具任意系数的广义Burgers方程的相似约化,这种约化是基于Bluman和Cole所提出的非经典对称群方法。
补充资料:Kdv方程
Image:11776596881617173.jpg
kdv方程

kdv方程是1895年由荷兰数学家科特韦格和德弗里斯共同发现的一种偏微分方程(也有人称之为科特韦格-德弗里斯方程,但一般都习惯直接叫kdv方程)。

kdv方程的解为簇集的孤立子(又称孤子,孤波)。

kdv方程和物理问题有几个联系。 它是弦在fermi-pasta-ulam问题在连续极限下的统治方程。kdv方程也描述弱非线性回复力的浅水波。

kdv方程也可以用逆散射技术求解,譬如那些适用于薛定谔方程的。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条