说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 广义三阶KdV方程
1)  generalized third-order KdV equation
广义三阶KdV方程
1.
Bifurcations of traveling wave solutions for generalized third-order KdV equation;
广义三阶KdV方程行波解的分支
2)  generalized fifth-order KdV equation
广义五阶KdV方程
1.
Exact solutions to a type of generalized fifth-order KdV equation;
一类广义五阶KdV方程的精确解
2.
The new exact solutions of a type of generalized fifth-order KdV equation
一类广义五阶KdV方程新的精确解
3)  Generalized KdV equation
广义KdV方程
1.
Overview of F-expansion Method and Solitary Wave Solutions of two Generalized KdV Equations;
F展开法综述和两个广义KdV方程的孤立波解
2.
Solitary Wave Solutions to a fifth order generalized kdv equation;
5阶广义kdv方程的孤波解
3.
A new generalized KdV equation K(m,n,1) is studied,namely ut+β1(um)x+β2(un)3x+β3u5x=0(m,n>1).
研究了一类新型的广义KdV方程K(m,n,1):ut+β1(um)x+β2(un)3x+β3u5x=0(m,n>1),用拟设法求出了它的Compacton解(即在有限区间外为0的孤波解),得到它的图像 并且考虑了Hamiton结构和守恒量,得到了三个守恒量 最后推广到一般的形式ut+β1(uk)x+ nβi(uk)(2i-1)x+βn+1u(2n+1)x=0 i=
4)  generalized KdV equations
广义KdV方程
1.
In this paper the variant coefficient generalized KdV equations are reduced to odinary differential equations by the use of AC=BD.
利用AC =BD的思想 ,将变系数广义KdV方程约化成常微分方程 ,求出了KdV方程的Lax对。
2.
In this paper, the following generalized KdV equations with periodic initial value problem is considered:semi-discrete and fully discrete Fourier spectral and pseudo-spectral schemes are proposed, the convergence and stability for the schemes are proved.
引 言在孤立子的研究中起着重要作用的典型方程-KdV方程已有不少作者[1-5]在数学分析上做了许多深入的研究,文[6]讨论了如下一类高阶广义KdV方程
5)  the third order Kdv equation
三阶Kdv方程
6)  generalized compound KdV equation
广义组合KdV方程
1.
Conditional stability of the solitary wave solutions for the generalized compound KdV equation and generalized compound KdV-Burgers equation;
广义组合KdV方程与广义组合KdV-Burgers方程孤波解的条件稳定性
补充资料:Kdv方程
Image:11776596881617173.jpg
kdv方程

kdv方程是1895年由荷兰数学家科特韦格和德弗里斯共同发现的一种偏微分方程(也有人称之为科特韦格-德弗里斯方程,但一般都习惯直接叫kdv方程)。

kdv方程的解为簇集的孤立子(又称孤子,孤波)。

kdv方程和物理问题有几个联系。 它是弦在fermi-pasta-ulam问题在连续极限下的统治方程。kdv方程也描述弱非线性回复力的浅水波。

kdv方程也可以用逆散射技术求解,譬如那些适用于薛定谔方程的。

说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条