1) Merit Function
增广函数
1.
Considering the complementary action between Newton method and Penalty method, we define a merit function to simplify the selection of initial point, so that algorithm have excellent global behavior.
本文应用的牛顿迭代法与罚函数法优缺点互补的特性在[3],[4],[5],[13],[14]等文章中均有应用,在此基础上我们提出一种具体形式的增广函数。
2) Augmented Lagrange function
增广Lagrange函数
1.
This algorithm uses augmented Lagrange function to transform this restraint question into the Non-Constraint Question,retains the merits of conjugate gradient method and the multiplier method,avoids the rigorous requirements of other algorithms for initial point,and needs not to calculate second time derivative.
该算法利用增广Lagrange函数将该约束问题转化为无约束问题,保留了共轭梯度法和乘子法的优点,避免了其他算法中对初始点的苛刻要求,也不需要计算二阶导数。
3) augmented Lagrange
增广Larange函数
4) augmented Lagrangian func-tions
增广Lagrangian函数
5) temperate distributions
缓增广义函数
1.
The properties of rapidly decreasing functions and temperate distributions are discussed,and an equivalent condition to judge temperate distributions is given.
对速降函数空间S和缓增广义函数空间S′上的性质进行了讨论与分析,并给出了缓增广义函数的一个等价条件。
6) weakly generalized Lagrange Function
弱增广Lagrange函数
补充资料:高斯函数模拟斯莱特函数
尽管斯莱特函数作为基函数在原子和分子的自洽场(SCF)计算中表现良好,但在较大分子的SCF计算中,多中心双电子积分计算极为复杂和耗时。使用高斯函数(GTO)则可使计算大大简化,但高斯函数远不如斯莱特函数(STO)更接近原子轨道的真实图象。为了兼具两者之优点,避两者之短,考虑到高斯函数是完备函数集合,可将STO向GTO展开:
式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
其变量与STO有相似的定义;Ngi是归一化常数:
rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
式中X(ζS,A,nS,l,m)定义为在核A上,轨道指数为ζS,量子数为nS、l、m 的STO;g是GTO:
其变量与STO有相似的定义;Ngi是归一化常数:
rA是空间点相对于核A的距离;ci是组合系数;K是用以模拟STO的GTO个数(理论上,K→∞,但实践证明K只要取几个,便有很好的精确度)。
ci和ζ在固定K值下, 通过对原子或分子的 SCF能量计算加以优化。先优化出 ζS=1 时固定K值的ci和(i=1,2,...,K),然后利用标度关系式便可得出ζS的STO展开式中每一个GTO的轨道指数,而且,ci不依赖于ζS,因而ζS=1时的展开系数就是具有任意ζS的STO的展开系数。对不同展开长度下的展开系数和 GTO轨道指数已有表可查。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条