说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 缓增广义函数空间
1)  slowly increasing distribution space
缓增广义函数空间
2)  temperate generalized functions/dual space
缓增广义函数/对偶空间
3)  temperate distributions
缓增广义函数
1.
The properties of rapidly decreasing functions and temperate distributions are discussed,and an equivalent condition to judge temperate distributions is given.
对速降函数空间S和缓增广义函数空间S′上的性质进行了讨论与分析,并给出了缓增广义函数的一个等价条件。
4)  generalized function denotation space
广义函数空间
5)  ωultradistributions
ω-超广义函数空间
6)  generalized D-gap function
广义D-间隙函数
补充资料:广义函数空间


广义函数空间
generalized functions, space of

其中。是依赖于毋任S*,,的充分小的数. 以上两类空间都是Hilbert空间的归纳和投射极限.很多几瓜冲阳月一nl抑oB空间属于这一类型. 关于经典的例子,这些空间的拓扑性质和其上的算子代数可见【A3],fA4].【译注】这里的FS型空间是F卫优het空间中特定的一类.余庆余译广义函数空间[脚曰血曰如以汕‘,匆甲理of;0606川eH-~初,诚“poc‘p‘cT,],分布李卿(曲肠butio”sPaCe) (充分好的)姆珍函攀宇卿(s哪of‘tfunc-石。拙)的对偶空间.碱d喊空间(Fr台为et sPa戊)(FS型)和强对偶于它们的空间(DFS型)在这里起着重要的作用.FS型空间是E以朋ch空间的直接集的投射极限,它的对偶空间是DFS型空间.DFS型空间是B缸uch空间的直接集的归纳极限,它的对偶空间是FS型空间.FS型和DFS型空间都是完全、可分、自反和Montel的.在FS型和DFS型空间中,弱收敛和强收敛一致. 检验函数和广义函数空间的例. l)空间S和S’·(纂呼(raPidiy~deCn戈‘吨”检验函数空间S=S(R”)由那些C的(r)函数组成,它和它的各阶导数在无穷远处递降速度快于}xl一’的任意幂次·这个空间是B阻犯Ch空间序列凡(p=0,1,…)的投射极限,凡由口(R”)函数组成,范数为 毋~J!毋}l,一s即(l+!xl’)产/’ID比势(x)I, {.{(p且包含凡+,C凡是紧的;S是FS型的.对偶空间S‘=S’(r)(攀增(sfow脚wth)广义函数空间)是压m由空间列凡的归纳极限,其中嵌入S,C凡十,是紧的,故S’是DFS型的.如果一个广义函数序列在S‘中弱收敛,那么在某个空间凡中,它依泛函的范数收敛.Fo山交r变换是空间S和空间S‘上的同构. 2)空间D(O)和D‘(O)(O是Rn中开集).由在O中有紧支集(见广义函数的支集(s叩port ofa罗ne扭山司血叨山n))的C的(口)函数组成的检验函数空间,它被赋予FS型空间(递增)序列c了(氏)(k“1,2,·‘’)的强归纳极限拓扑,其中{认}是严格递增开集序列,该序列穷尽。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条