1) augmented Lagrangian function
增广拉格朗日函数
1.
In this paper,some approximate optimal solutions and an augmented Lagrangian function in nonlinear programming were introduced,duality map and duality problems based on the augmented Lagrangian function were established, relationship between the approximate optimal solutions of augmented Lagrangian function and primal problem was discussed.
介绍了几种近似最优解和增广拉格朗日函数,建立了基于增广拉格朗日函数的对偶映射和相应的对偶问题,讨论了增广拉格朗日函数的几种近似解和原问题的几种近似解的关系,得到的结果推广了一些已有的结论。
2) Generalized augmented Lagrangian
广义增广拉格朗日函数
3) approximate augmented Lagrangian function
近似增广拉格朗日函数
1.
In this paper,the author introduced an approximate augmented Lagrangian function in nonlinear programming,established dual mapping and the related dual problem of this augmented Lagrangian function and obtained the results of approximate strong duality and approximate weak duality of original problems.
介绍了非线性规划中的一种近似增广拉格朗日函数,建立了基于这种增广拉格朗日函数的对偶映射和相应的对偶问题,得到了原问题和对偶问题的强近似对偶和弱近似对偶结果。
4) Hestenes-Powell augmented Lagrangian function
Hestenes-Powell增广拉格朗日函数
1.
In this paper, the Hestenes-Powell augmented Lagrangian function is again considered, for solving equality constrained problems via unconstrained minimization techniques.
在适当的条件下,我们建立了Hestenes-Powell增广拉格朗日函数在原问题变量空间上的无约束极小与原约束问题的解之间的关系,并且也给出了Hestenes-Powell增广拉格朗日函数在原问题变量和乘子变量的积空间上的无约束极小与原约束问题的解之间的一个关系。
2.
The Hestenes-Powell augmented Lagrangian function(HP-ALF) has been used for solving inequality constrained optimization problems via unconstrained minimization techniques.
本文对不等式约束优化问题的Hestenes-Powell增广拉格朗日函数(简记为HP-ALF)的精确性质作了详尽讨论。
5) generalized lagrange func-tion
广义拉格朗日函数
6) Lagrange function
拉格朗日函数
1.
Deduction of conservation law in mechanics from Lagrange function;
由拉格朗日函数讨论力学中的守恒定律
2.
The Lagrange function and the micro increasing rate of the network loss strive for the reactive power optimization compensation.
该程序用牛顿-拉夫逊法计算潮流,拉格朗日函数和网损微增率法求无功功率最优化补偿。
3.
Starting from the Lagrange function of the electromagnetic field,we applied Fonrier transform,obtained the unity theory for the variation fundamental in the harmonic electromagnetic field.
从电磁场的拉格朗日函数出发,利用傅里叶变换,得到了谐变电磁场变分问题的统一理论,并由此推导出经典电磁场理论的结果。
补充资料:拉格朗日函数
见拉格朗日方程。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条