说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 拟GV-半群
1)  quasi-GY-semigroup
拟GV-半群
2)  GV-semigroup
GV-半群
1.
We study the relation of a GV-inverse semigroup congruence on a GV-semigroup S=(Y;Sα)and the π-group congruence on Sα.
讨论了GV-半群S=(Y;Sα)上的GV-逆半群同余与Sα上的π-群同余的关系,并把讨论结果应用到完全正则半群上。
2.
Futher we apply our results to GV-semigroups and E-inversive semigroups.
本文主要利用同余的核和迹讨论π-正则半群上的完全正则同余对,并把结果推广到GV-半群和E-反演半群上。
3)  GV-inverse semigroup
GV-逆半群
1.
Subsemigroup〈E(S)〉of a GV-inverse Semigroup;
GV-逆半群S的子半群〈E(S)〉
4)  GV-semigroups
GV-半群
1.
In this dissertation, we mainly describe some congruences and characters onGV-semigoups, in fact, we extend some results of completely regular semigroup toGV-semigroups.
本文主要讨论了GV-半群的某些性质和同余,把完全正则半群的某些结果推广到了GV-半群上,全文共分两章,具体内容如下: 第一章主要讨论了GV-半群的某些性质。
2.
Left regular semigroups,regular subsets and GV-semigroups are studied in this paper.
本文主要研究了左正则半群,正则子集以及GV-半群。
5)  strong GV-semigr oup
强GV-半群
6)  GV-inverse semigroup congruence
GV-逆半群同余
1.
We study the relation of a GV-inverse semigroup congruence on a GV-semigroup S=(Y;Sα)and the π-group congruence on Sα.
讨论了GV-半群S=(Y;Sα)上的GV-逆半群同余与Sα上的π-群同余的关系,并把讨论结果应用到完全正则半群上。
补充资料:分配拟群


分配拟群
distributive quasi -group

分配拟群「业众面心锐q脚目一g川甲;及.eT一6yT二。a.Kna3llrPynoa] 满足左及右分配律 x·yz=义夕·淞,yz·x=yx·zx的拟群(ql姚i一gro叩).拟群中这两个分配律是互相独立的(存在左分配拟群但不是右分配拟群(【1】)).可引用有理数集Q作为分配拟群的例子,其运算是(x+y)/2.任何幂等中间拟群(认劝加切tn盆d词q姆i-grouP,即拟群Q,其中关系式尹“x及xy·训=郑·夕。对所有x,y,。,。任Q都成立)是分配拟群,一般情形下,每个分配拟群Q(·)同痕(切topy)于某个交换的M门血嗯么拟群(Moul触ngfoOP)(【31).分配拟群的共生拟群(paxas加Phy)(对于逆运算构成的拟群匆uasi一grouP”也是分配拟群且合痕于同一个交换的M otd汕g么拟群.设分配拟群中的四个元素a,b,c,d适合中间律(n址djal hw):曲·cd“ac·掀,则它们生成中间子拟群,特别地,分配拟群中任何三元家生成中间子拟群.在子拟群中平移是自同构,且在某种意义上,分配拟群是齐性的:没有元素和子拟群是特殊的.由有限分配拟群的全部右平移生成的群是可解群(【4]).【补注】陈l]中证明了阶为片…式‘的拟群(其中几为不同的素数,久是非负整数)皆同构于分配拟群Q:,…,Q*的直积,其中Q‘具有阶广且当八笋3时是Ab日拟群(即满足的·扭=禽·掀).
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条