1) Submerged Floating Tunnel
水下悬浮隧道
1.
In the last few decades,an innovative strucure concept for crossing straits,rivers,lakes and waterways,called Submerged Floating Tunnel,attracts worldwide attention.
在最近几十年里,一种新的跨越海峡、大江、湖泊、水道的交通结构物-水下悬浮隧道吸引了世人的目光。
2.
The submerged floating tunnel (SFT), an innovative structural typology, is used to cross waterway, such as strait, lake, fjord, etc.
水下悬浮隧道(Submerged Floating Tunnel,简称SFT),是一种用于跨越海峡、海湾、湖泊及其他水道的新型交通结构物。
2) submerged floating tunnel
水中悬浮隧道
1.
Vortex-induced vibration of submerged floating tunnel tethers in shear current;
水中悬浮隧道锚索在剪切流中的涡激响应
2.
Dynamic response of submerged floating tunnel due to regular wave forces is investigated.
针对水中悬浮隧道在波浪力作用下动力响应的问题,通过柔度系数法推导得到了悬浮隧道的等效刚度系数,考虑了不同自由度运动之间的耦合作用,建立了悬浮隧道管段的动力响应模型,在时间域内采用逐步积分法迭代求解其运动控制方程。
3.
The dynamic response of a submerged floating tunnel due to regular wave forces is investigated.
针对水中悬浮隧道在波浪力作用下动力响应的问题,通过Hamilton原理推导得到了悬浮隧道管段和锚索的运动控制方程,同时考虑了锚索横向和轴向变形之间的耦合作用,建立了悬浮隧道的动力响应模型,在时间域内采用逐步积分法迭代求解其运动控制方程。
3) submerged floating tunnel (SFT)
水中悬浮隧道
1.
A vortex-induced in-line vibration model is formulated for the calculation of nonlinear dynamic response of submerged floating tunnel (SFT) tethers due to wave and current effects.
建立了水中悬浮隧道的锚索在波流场中顺流向涡激振动的数学模型,并考虑了波浪作用下,悬浮隧道的运动引起的强迫激励和参数激励对锚索顺流向涡激振动的影响。
4) submerged floating tunnel
悬浮隧道
1.
Analysis the submerged floating tunnel’s reasonable support length;
水中悬浮隧道合理支撑间距分析
2.
Multi-order vortex-induced nonlinear vibration of submerged floating tunnel tether;
悬浮隧道锚索多阶涡激非线性振动
3.
Calculations of the wave loads on submerged floating tunnels;
悬浮隧道所受波浪荷载的计算分析
6) Underwater tunnel
水下隧道
1.
Mechanic behavior of wall soil and liner of underwater tunnel;
水下隧道周围土体及衬砌变形力学性状研究
2.
Research on the Minimum Rock Cover Thickness of Underwater Tunnel in Alternating Layers of Hard and Soft Rocks;
软硬岩交互地层水下隧道最小岩石覆盖层厚度研究
3.
Shiziyang tunnel on Guangzhou-Shenzhen-Hong Kong passenger-dedicated railway,which has a design speed of 350km/h,is a milestone in underwater tunnel construction in China.
设计时速达350 km/h的广深港客运专线狮子洋隧道,在我国水下隧道建设史上具有里程碑的意义,如何把握该工程的技术难点,适时开展相关科研工作,并采取针对性措施,对提高工程的建设质量至关重要,也为今后高水压、特长水下隧道的建设提供借鉴。
补充资料:水下公路隧道
在河流、湖泊、海湾和海峡等水域底下开凿的公路隧道。
概述 水下隧道的建设历史悠久。早在公元前2180~前2160年,巴比伦人就修建了一座穿越幼发拉底河的水下人行隧道。这座隧道长 900米,宽3.6米,高4.6米,用砖衬砌。20世纪以来,水下公路隧道在一些国家相继出现,其中较早而又较著名的有美国在纽约市修建的穿越哈得孙河的霍兰公路隧道(1927年建成);英国在利物浦市修建的穿越默西河的公路隧道(1934年建成);荷兰在鹿特丹市修建的穿越马斯河的公路隧道(1941年建成)等。
1965年5月,中国开始在上海市修建穿越黄浦江的公路隧道。这座隧道于1970年9月建成通车,总长 2736米(隧道圆形段长1322米,矩形段长 1048米,引道长366米),设计净宽7.07米,是一条单管双车道隧道。1980年,埃及建成穿越苏伊士运河的公路隧道,总长1620米。
修建穿越水域的水下公路隧道同修建跨越水域的高架桥和引桥相比,具有许多优点,如水下公路隧道不妨碍水上交通和地面交通,也不影响河流两岸或港口的资源利用和开发。因此,交通繁忙的公路,如果要在人口稠密地区越过有大型船只航行的河道,则以修建水下隧道较为有利。
施工方法 主要有钻爆法(矿山法)、围堰明挖法、气压沉箱法、盾构法和沉管法(见隧道工程)等。目前,盾构法和沉管法应用较多。
盾构法 采用盾构作为隧道施工机具的方法。盾构外壳一般为圆筒形,其前部为装置开挖设备的切口环,中部为装置推进设备的支持环,尾部为掩护拼装衬砌工作的盾尾。它是1825年由在法国出生的英国人M.I.布鲁内尔和他的儿子发明的。用盾构法施工的优点是施工安全,不影响水上交通。缺点是隧道引道长度较大,接缝较多,容易发生渗漏;在岸上段内施工时,可能发生地面沉降,造成危害。这种方法比较多地用于松软地层的水下隧道施工。
沉管法 把水下隧道按设计要求,在岸上船坞中分段预制成管段,然后用拖船浮运到位,沉放到预先浚挖好的槽中,并在水下依次把管段连接起来,建成穿越水域的隧道。这种方法在1906~1910年修建美国底特律隧道时,首先被采用。其优点是建成的隧道整体性好,防水性好,引道较短或坡度较缓,可用于大尺寸的矩形断面隧道的施工。缺点是影响水上交通。
运营 水下公路隧道运营中,有三个比较特殊的问题,即通风、照明和消防。
通风 水下公路隧道中行驶的机动车,都不可避免地排出一定量的废气或烟尘。这些废气或烟尘在隧道内蓄积,不仅危害人体,而且会降低隧道内的能见度,给安全行车造成威胁。因此,水下公路隧道需要有完善的通风系统,以输入新鲜空气,排出有害气体。通风方法可视隧道的长度和交通量不同,采取不同的方法,如:短隧道可用自然通风法;较长的隧道可用排风机排出污浊空气,自然地吸进新鲜空气的方法;或用鼓风机从进风井打进新鲜空气,把污浊空气排挤出去的方法;长隧道一般同时使用排风机和鼓风机,并合理地安排风道,以达到有效的通风目的。
通风设备按通风方式可分为纵向通风系统、全横向通风系统和半横向通风系统。纵向通风系统是在单管单向行车的隧道中,借助于机动车运动产生的活塞作用进行通风,或采用安装在隧道顶部的射流风机提高通风效率。全横向通风是在沿隧道下部设置送风道供风,在顶部设置排风道排风。全横向通风在沿车道的空间上无纵向气流。半横向通风同全横向通风不同,半横向通风没有顶部的排风道,污浊空气是沿车道的空间流向排风井排出的。
照明 水下公路隧道的照明水平,是按照行车速度对能见度的要求而定的。隧道内照明系统的照度一般为20~100勒克司;隧道洞口外的天然照度一般为50000~100000勒克司,机动车辆驶驾员进入洞口时,视觉需要有一段适应时间,否则将产生"黑洞现象"。因此,隧道照明需要采取光过渡措施,主要有天然光过渡、人工光过渡和两者结合的过渡方式。
隧道照明一般采用纵向连续带形光源。此外,有少数隧道采用横向间断布光,但容易产生周期的闪光现象,引起驾驶员眼睛疲劳,所以应用较少。隧道照明除了合理布置光源之外,隧道墙面颜色和光泽也须考虑,如侧壁墙面采用反射系数较大的浅色,有利于提高车道的照度。
消防 火灾是公路隧道可能发生的严重灾害,必须建立警报和消防系统。一般隧道中都设置有消防栓、空气泡沫枪和砂箱等,有的还安装有火警探测器和自动水喷淋灭火系统。
现代化的水下公路隧道中,设有运营控制中心,其中有电力控制系统、电话联系系统、照明控制系统、交通监测系统、电视监视系统、通风监测及微处理控制系统、广播系统等,在中央控制室内有总控制台和模拟显示屏幕,进行集中控制和监测。此外,还备有拖车和消防车。
概述 水下隧道的建设历史悠久。早在公元前2180~前2160年,巴比伦人就修建了一座穿越幼发拉底河的水下人行隧道。这座隧道长 900米,宽3.6米,高4.6米,用砖衬砌。20世纪以来,水下公路隧道在一些国家相继出现,其中较早而又较著名的有美国在纽约市修建的穿越哈得孙河的霍兰公路隧道(1927年建成);英国在利物浦市修建的穿越默西河的公路隧道(1934年建成);荷兰在鹿特丹市修建的穿越马斯河的公路隧道(1941年建成)等。
1965年5月,中国开始在上海市修建穿越黄浦江的公路隧道。这座隧道于1970年9月建成通车,总长 2736米(隧道圆形段长1322米,矩形段长 1048米,引道长366米),设计净宽7.07米,是一条单管双车道隧道。1980年,埃及建成穿越苏伊士运河的公路隧道,总长1620米。
修建穿越水域的水下公路隧道同修建跨越水域的高架桥和引桥相比,具有许多优点,如水下公路隧道不妨碍水上交通和地面交通,也不影响河流两岸或港口的资源利用和开发。因此,交通繁忙的公路,如果要在人口稠密地区越过有大型船只航行的河道,则以修建水下隧道较为有利。
施工方法 主要有钻爆法(矿山法)、围堰明挖法、气压沉箱法、盾构法和沉管法(见隧道工程)等。目前,盾构法和沉管法应用较多。
盾构法 采用盾构作为隧道施工机具的方法。盾构外壳一般为圆筒形,其前部为装置开挖设备的切口环,中部为装置推进设备的支持环,尾部为掩护拼装衬砌工作的盾尾。它是1825年由在法国出生的英国人M.I.布鲁内尔和他的儿子发明的。用盾构法施工的优点是施工安全,不影响水上交通。缺点是隧道引道长度较大,接缝较多,容易发生渗漏;在岸上段内施工时,可能发生地面沉降,造成危害。这种方法比较多地用于松软地层的水下隧道施工。
沉管法 把水下隧道按设计要求,在岸上船坞中分段预制成管段,然后用拖船浮运到位,沉放到预先浚挖好的槽中,并在水下依次把管段连接起来,建成穿越水域的隧道。这种方法在1906~1910年修建美国底特律隧道时,首先被采用。其优点是建成的隧道整体性好,防水性好,引道较短或坡度较缓,可用于大尺寸的矩形断面隧道的施工。缺点是影响水上交通。
运营 水下公路隧道运营中,有三个比较特殊的问题,即通风、照明和消防。
通风 水下公路隧道中行驶的机动车,都不可避免地排出一定量的废气或烟尘。这些废气或烟尘在隧道内蓄积,不仅危害人体,而且会降低隧道内的能见度,给安全行车造成威胁。因此,水下公路隧道需要有完善的通风系统,以输入新鲜空气,排出有害气体。通风方法可视隧道的长度和交通量不同,采取不同的方法,如:短隧道可用自然通风法;较长的隧道可用排风机排出污浊空气,自然地吸进新鲜空气的方法;或用鼓风机从进风井打进新鲜空气,把污浊空气排挤出去的方法;长隧道一般同时使用排风机和鼓风机,并合理地安排风道,以达到有效的通风目的。
通风设备按通风方式可分为纵向通风系统、全横向通风系统和半横向通风系统。纵向通风系统是在单管单向行车的隧道中,借助于机动车运动产生的活塞作用进行通风,或采用安装在隧道顶部的射流风机提高通风效率。全横向通风是在沿隧道下部设置送风道供风,在顶部设置排风道排风。全横向通风在沿车道的空间上无纵向气流。半横向通风同全横向通风不同,半横向通风没有顶部的排风道,污浊空气是沿车道的空间流向排风井排出的。
照明 水下公路隧道的照明水平,是按照行车速度对能见度的要求而定的。隧道内照明系统的照度一般为20~100勒克司;隧道洞口外的天然照度一般为50000~100000勒克司,机动车辆驶驾员进入洞口时,视觉需要有一段适应时间,否则将产生"黑洞现象"。因此,隧道照明需要采取光过渡措施,主要有天然光过渡、人工光过渡和两者结合的过渡方式。
隧道照明一般采用纵向连续带形光源。此外,有少数隧道采用横向间断布光,但容易产生周期的闪光现象,引起驾驶员眼睛疲劳,所以应用较少。隧道照明除了合理布置光源之外,隧道墙面颜色和光泽也须考虑,如侧壁墙面采用反射系数较大的浅色,有利于提高车道的照度。
消防 火灾是公路隧道可能发生的严重灾害,必须建立警报和消防系统。一般隧道中都设置有消防栓、空气泡沫枪和砂箱等,有的还安装有火警探测器和自动水喷淋灭火系统。
现代化的水下公路隧道中,设有运营控制中心,其中有电力控制系统、电话联系系统、照明控制系统、交通监测系统、电视监视系统、通风监测及微处理控制系统、广播系统等,在中央控制室内有总控制台和模拟显示屏幕,进行集中控制和监测。此外,还备有拖车和消防车。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条