说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 张量积函数
1)  tensor-product function
张量积函数
1.
Performance scatter analysis of solid rocket motor based on tensor-product function;
基于张量积函数的固体火箭发动机性能散布分析
2)  tensor product weight function
张量积核函数
1.
To improve the accuracy, the tensor product weight function which has rectangular influence domain is picked out.
将一种新的数值方法无网格伽辽金法(EFGM)用于刚塑性可压缩材料稳态轧制过程的模拟,由于形函数不满足插值条件,采用罚函数法满足本质边界条件;为提高精度,选用矩形影响域的张量积核函数;利用有限元背景网格作为积分单元,对求解域内和边界上采用不同的高斯积分方案·数值计算结果与刚塑性有限元的计算结果和文献中的实验数据吻合较好,说明无网格伽辽金法用于刚塑性可压缩材料轧制过程的可行性和正确性
2.
The penalty function is adopted to impose the essential boundary condition, the tensor product weight function with a rectangular influence domain is chosen, and the finite element background cell is considered as the integration unit.
将无网格再生核质点法(RKPM)用于刚塑性可压缩材料轧制过程的模拟,采用罚函数满足本质边界条件,选用矩形影响域的张量积核函数,利用有限元网格作为积分单元,对求解域内和边界上采用不同的高斯积分方案。
3)  tensor function
张量函数
1.
In this paper the Kronecker Product and the structure tensors of subgroups are introduced in order to obtain the representation for isotropic tensor functions.
引用Kronecker积和结构张量的概念,寻找数值、向量或二阶张量函数的表示理论。
4)  tensor product functor
张量积函子
1.
This paper discusses the homotopy adjoint property of tensor product functor _RY and the hom functor hom_s(Y,-) in the categories of complexes.
主要讨论了复形范畴的张量积函子与hom函子的同伦伴随性,并且给出了同伦正则正向极限的定义,证明了复形范畴的张量积函子保持这种极限。
5)  tensor product functor
张量乘积函子
6)  algebraic tensor product
代数张量积
1.
In this paper we study a condition which is called property(C′),namely an isometry on algebraic tensor products which are completed by the minimal C~*-norm.
本文主要讨论代数张量积在最小C~*-范数下的一类等距问题,即性质(C′)。
补充资料:拓扑张量积


拓扑张量积
topological tensor product

拓扑弓恻吸积[tOI冲】硒cai tensor脚团心;Ton0JI0r“ttecK0eTeo3opooe opo:3oe八e。。e」,两个局部凸空间E,和EZ的 关于E J x EZ上双线性算子有泛性质且满足一连续条件的一个局部凸空间(focally convex sPace).更确切地说,设犷是局部凸空间的某一个类且对每一F〔、丫设给定从E,xE:到F中的分别连续双线性算子集合的一个子集T(F).则E:和E:的拓扑张量积(关于T(F))是有以下性质的(唯一的)局部凸空间E.⑧EZ‘才连同算子B任T(Et⑧EZ):对任何S〔T(F),F〔‘分,存在唯一的连续线性算子R:E:面EZ~F使得R OB一5.这样,如果说到函子T:分~集合,则E,⑧E:定义为这函子的表示对象. 在所有已知的例子中‘分包含复数域C,而T(C)包含具有fog形式,f〔E;,g任E;,映(x,y)到f(x)g(x)的所有双线性泛函.如果在拓扑张量积存在的情形,则存在一个E;⑧E:中可等同于代数张量积(tensorp代心uct)E,⑧E:的稠密子空间;此外,B(x,y)=义⑧y, 如果分由所有分别(分别地,联合)连续双线性算子组成,则该拓扑张量积称为归纳的(山duetive)(相应地,射影的(Projective)).最重要的是射影拓扑张量积.设毛p,}是E,(i=1,2)中的一个半范数定义族;用二表示用半范数族{P,⑧pZ}定义的E,⑧石1上的拓扑: 尸,⑧尸2(u)二 一‘{、全、二(一,:2(:*,:*艺、一⑧,*一}·如果、·是所有的或相应地,所有完全的局部凸空间的类,则E.和EZ的射影拓扑张量积存在且其局部凸空间是具有拓扑万的EI⑧E:,相应地,其完全化(completion).如果E,是带有范数夕,的确nach空Ib],i二I,2,则P、因p:是E、⑧石:上的一个范数;关于它的完全化记成E,⑧E2.对每一£>O,E:⑧百2的元素有表示 。=艺x*⑧y、, k二l这里 、若.。、(x*):2(,*)簇,、⑧,2(。)+。. 如果用半范数族p,⑧pZ 尸!⑧尹2(。)二sun}(f⑧g)(材)} f.f产‘l/x附赋予E、⑧E:一个弱于兀的拓扑,这里V和附是关于p;和p:的单位球面的极集,则产生了一个拓扑张量积,有时称为内射的(injective). 局部凸空间E,,如果具有这样的性质:对一个任意的EZ在£、⑧EZ上的两个拓扑重合,则它们构力交核空间(nuc贻ar sPaee)这一重要的类. 射影拓扑张量积是与下述的逼近性质相结合的:局部凸空间EI有逼近性质,如果对每一准紧集KCE:和零的邻域U存在有限秩连续算子洲E卫~E,使得对所有x任K有欠一甲(x)‘U.所有的核空间都有逼近性质.Banach空间E,有逼近性质,当且仅当对任意Banacl、空问EZ由方程卜(、⑧力l(f⑧妇=j(卜、)夕(y)确切定义的算子:二[E.⑧EZ}~〔E:⑧E:)’有平凡核.无逼近性质的可分Banaeh空间已经构造出来(【3}).这空间也给出了无Schauder基的Banacl:空间的一个例子,因为有schauder基的Banach空问有通近性质(这样,5.Banach所称的“基问题”已被否定地解决了),
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条