2) Space ofφ-variable basis powerset bounded linear operators
φ-变基幂集有界线性算子空间
3) bornological linear spaces
有界线性空间
1.
In bornological linear spaces,drop theorem is established and Mackey drop property is introduced.
给出了有界线性空间中的一个滴状定理和Mackey滴状性质,还给出了有界线性空间中Mackey滴状性质的序列流特征以及与泛函取极值之间的联系。
2.
In bornological linear spaces,Ekeland\'s variational principle is generalized which uses subadditive,strictly increusing continuous fuctions.
本文利用次可加,严格递增的连续实函数对有界线性空间中的Ekeland变分原理进行了推广。
4) bounded linear operator
有界线性算子
1.
Perturbation of bounded linear operator A_(T,S)~(2) in Hilbert spaces;
Hilbert空间有界线性算子A_(T,S)~(2)的扰动分析
2.
The problem about family of bounded linear operator from n×n matrices to itself;
n×n阵列到自身的有界线性算子族问题
3.
We characterize the generalized regular points of f using the three integer-valued (or infinite) indices M(x0),Mc(x0) and Mr(x0) at x0∈E generated by f and by analyzing generalized inverses of bounded linear operators on Banach spaces,that is,if f′(x0) has a g.
用f产生的在x0∈E处的3个整数(或无穷大)值指标M(x0),Mc(x0)和Mr(x0)和分析Banach空间上有界线性算子的广义逆来刻画f的广义正则点,即,如果f′(x0)在从E上到F的有界线性算子组成的Banach空间B(E,F)内有广义逆,且M(x0),Mc(x0)和Mr(x0)中至少有一个是有限,则x0是f的广义正则点的充分必要条件是多重指标(M(x),M(x),M(x))在x点处连续。
5) power bounded operator
幂有界线性算子
6) Almost surely bounded randomlinear operator
a.s有界线性算子
补充资料:有界线性算子
设t:x→y是从赋范空间x到y的线性算子。 如果当x∈x跑遍所有元素,||t(x)||/||x||的上确界存在且有限,则称t是有界线性算子。此处||*||表示范数。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条