说明:双击或选中下面任意单词,将显示该词的音标、读音、翻译等;选中中文或多个词,将显示翻译。
您的位置:首页 -> 词典 -> 拟半张量积
1)  quasi-semi-tensor product
拟半张量积
1.
This paper proposes a new matrix product,namely,quasi-semi-tensor product.
介绍了矩阵的一种新的运算-拟半张量积,并相应的引入了一系列新的概念及其性质。
2)  left-semi-tensor product
左半张量积
1.
This paper analysises the left-semi-tensor product,which is a new operation of matrices,obtains some new properties and important conclusions.
对左半张量积,矩阵的一种新的运算,进行了研究,获得了一些新的性质,得出了一些重要的结论。
2.
First,the inequalitiy for the eigenvalues of the left-semi-tensor product of twocomplex matrices are obtained.
首先给出了任意两个复矩阵做左半张量积的特征值的不等式,然后给定两个(半)正定矩阵A、B以及它们的特征值,给出了矩阵A、B的左半张量积的特征值不等式以及一个精确估计,得到了一个不断缩小A×lB特征值的下、上限间距离的方法。
3)  right semi-tensor product
右半张量积
1.
The rank of matrix which two matrices act right semi-tensor product is given.
给出了两个矩阵做右半张量积后矩阵的秩,并且讨论了相关的秩的不等式。
4)  left semi-tensor product
左半张量积
1.
Some problems about rank of left semi-tensor product of matrices
关于矩阵左半张量积秩的问题
2.
This paper proposes a new matrix product,namely,extensive-tensor product by widening left semi-tensor product which is introduced by Professor Dai-zhan Chen in paper[7].
通过对程代展教授在文献[7]中提出的左半张量积的概念进行推广,得到了一种更为普遍的矩阵乘法,称做泛张量积。
5)  semi-tensor product
半张量积方法
1.
This paper tackles the problem of transient voltage stability by using the semi-tensor product method of non-linear dynamics.
本文基于非线性动力学的半张量积方法研究电力系统暂态电压稳定问题,以期在电力系统发生大扰动后快速判断故障后系统的电压稳定性,从而有利于及时采取控制措施避免系统崩溃。
6)  matrix left semi-tensor product
矩阵左半张量积
1.
The reverse order law for the weighted Moore-Penrose inverse of a triple matrix left semi-tensor product is investigated,and a necessary and sufficient condition for it is given.
给出了三矩阵左半张量积A⊙B⊙C的加权Moore-Penrose逆满足反序律(A⊙B⊙C)M+K=(CL+KIt)(BN+LIp)A+MN的充要条件。
补充资料:拓扑张量积


拓扑张量积
topological tensor product

拓扑弓恻吸积[tOI冲】硒cai tensor脚团心;Ton0JI0r“ttecK0eTeo3opooe opo:3oe八e。。e」,两个局部凸空间E,和EZ的 关于E J x EZ上双线性算子有泛性质且满足一连续条件的一个局部凸空间(focally convex sPace).更确切地说,设犷是局部凸空间的某一个类且对每一F〔、丫设给定从E,xE:到F中的分别连续双线性算子集合的一个子集T(F).则E:和E:的拓扑张量积(关于T(F))是有以下性质的(唯一的)局部凸空间E.⑧EZ‘才连同算子B任T(Et⑧EZ):对任何S〔T(F),F〔‘分,存在唯一的连续线性算子R:E:面EZ~F使得R OB一5.这样,如果说到函子T:分~集合,则E,⑧E:定义为这函子的表示对象. 在所有已知的例子中‘分包含复数域C,而T(C)包含具有fog形式,f〔E;,g任E;,映(x,y)到f(x)g(x)的所有双线性泛函.如果在拓扑张量积存在的情形,则存在一个E;⑧E:中可等同于代数张量积(tensorp代心uct)E,⑧E:的稠密子空间;此外,B(x,y)=义⑧y, 如果分由所有分别(分别地,联合)连续双线性算子组成,则该拓扑张量积称为归纳的(山duetive)(相应地,射影的(Projective)).最重要的是射影拓扑张量积.设毛p,}是E,(i=1,2)中的一个半范数定义族;用二表示用半范数族{P,⑧pZ}定义的E,⑧石1上的拓扑: 尸,⑧尸2(u)二 一‘{、全、二(一,:2(:*,:*艺、一⑧,*一}·如果、·是所有的或相应地,所有完全的局部凸空间的类,则E.和EZ的射影拓扑张量积存在且其局部凸空间是具有拓扑万的EI⑧E:,相应地,其完全化(completion).如果E,是带有范数夕,的确nach空Ib],i二I,2,则P、因p:是E、⑧石:上的一个范数;关于它的完全化记成E,⑧E2.对每一£>O,E:⑧百2的元素有表示 。=艺x*⑧y、, k二l这里 、若.。、(x*):2(,*)簇,、⑧,2(。)+。. 如果用半范数族p,⑧pZ 尸!⑧尹2(。)二sun}(f⑧g)(材)} f.f产‘l/x附赋予E、⑧E:一个弱于兀的拓扑,这里V和附是关于p;和p:的单位球面的极集,则产生了一个拓扑张量积,有时称为内射的(injective). 局部凸空间E,,如果具有这样的性质:对一个任意的EZ在£、⑧EZ上的两个拓扑重合,则它们构力交核空间(nuc贻ar sPaee)这一重要的类. 射影拓扑张量积是与下述的逼近性质相结合的:局部凸空间EI有逼近性质,如果对每一准紧集KCE:和零的邻域U存在有限秩连续算子洲E卫~E,使得对所有x任K有欠一甲(x)‘U.所有的核空间都有逼近性质.Banach空间E,有逼近性质,当且仅当对任意Banacl、空问EZ由方程卜(、⑧力l(f⑧妇=j(卜、)夕(y)确切定义的算子:二[E.⑧EZ}~〔E:⑧E:)’有平凡核.无逼近性质的可分Banaeh空间已经构造出来(【3}).这空间也给出了无Schauder基的Banacl:空间的一个例子,因为有schauder基的Banach空问有通近性质(这样,5.Banach所称的“基问题”已被否定地解决了),
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条