1) skew tensor product
斜张量积
1.
On the basis of reviewing the essential concepts and properties of both skew tensor products and skew homomorphisms,this article proves the Kunneth theorem.
在回顾张量积和斜同态两个基本概念和性质的基础上,证明了斜张量积的kunneth定理。
2) tensor product
张量积
1.
Decomposition of the tensor product of the simple module for the simple algebraic group of type G_2;
G_2型单代数群的单模张量积的分解
2.
The tensor product of weakly commutative semigroups and separative semigroups;
弱交换半群的张量积与可分半群的张量积
3) Kronecker product
张量积
1.
In this paper we first discuss the properties of Kronecker product of complex metapositive definite matrices,and then generalize the Schur theorem,the Hua Luogeng theorem.
讨论了复亚正定矩阵张量积的性质,并将实对称矩阵的Schur定理、华罗庚定理推广到较为广泛的复矩阵类。
2.
The paper also discusses their Kronecker product and Hadamard product ,and points out the differencl of sub positive definite of real matrx from positive definite real matrix.
同时对它们的张量积与圈积进行了讨论 ,并指出与一般正定矩阵不同的地
3.
In this paper we first discuss the properties of Kronecker product of complex metapositive definite matrices; and then generalize the Schur theorem, the Hua Luogeng theorem and tile Minkowski ineguality of real symmetric matrices.
复亚正定矩阵是正定Hermite矩阵的推广,本文讨论了这一类矩阵张量积的性质,并将实对称矩阵的Schur定理、华罗庚定理和Minkowski不等式推广到较为广泛的复矩阵类。
4) Kronecker tensor product
Kronecker张量积
1.
The nonlinear partial differential equations are transformed into the ordinary differential equations of Kronecker tensor product by series expansion and solved numerically by the fourth order Runge Kutta metho.
基于经典的层合板理论及板的大挠度基本假设 ,得到四边简支层合板的非线性运动方程及变形协调方程 ;用级数展开把非线性偏微分方程组化为易于求解的 Kronecker张量积形式的二阶常微分方程组 ,并由四阶Runge- Kutta法数值求解 。
5) tensor products
张量积
1.
We have determined the edge-bindingmumber of tensor products of the following graphs:path and circuit,circuit and circuit,pathand complete graph,circuit and complete graph,path and complete bigraph,circuit an.
本文研究了张量积图的边职结数,由于确定任意图的束积的边职结数很难,故限于讨论下列类型图的张量积:路(Ln),图(Cn)。
2.
We discuss systematically some results of the category of ZYE 3 algebras-products,coproducts,fibre products (or pullbra cks),tensor products,direct limils,and inverse limits.
系统地讨论ZYE3代数的范畴理论,其中包括积、上积、纤维积、张量积、正向极限和逆向极限。
6) l-tensor product
l-张量积
补充资料:斜对称张量
斜对称张量
skew-symmetric tensor;
斜对称张最【蛾e钾一男例1泊的c妇贬眼;Kococ枷Me,抓ec-以益Te”3oP] n维向量空间E上的一个张量,它在关于其一组指标的交错(a址n扭tion)运算下是不变的.一个斜对称张量的分量关于相应的指标组是斜对称的,亦即在交换两个指标时,分量改变符号(在E所据以定义的域K的加法规则意义下),当两个指标相等时分量为零. 最重要的斜对称张量是关于全体协变指标或全体反变指标的交错运算下保持不变的张量.;阶斜对称反变(共变)张量是E上的(对应地,在E的对偶空间E申上的)r向量(卜戏tor)或多重向量(功初石-二tor);它们是向量空间E的外代数的元素.E*上的外代数通常称为外形式代数,把:阶斜对称协变张量和;形式等同起来. 参考文献见外代数(exterior al罗bra). H.X.Ca6HToB撰陈维桓译
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条