1) 2D potential problem
二维位势问题
1.
The Fast Multipole BEM based on Taylor expansions is applied to 2D potential problem,the Fast Multipole BEM for 2D potential problem is presented and the Fast Multipole Expansion of 2D Potential Problem is developed.
将基于Taylor展式地快速多极边界元法应用到二维位势问题中,提出了二维位势问题地快速多极边界元格式,建立了二维位势问题的快速多极展开式。
2) 3-D potential problem
三维位势问题
3) potential problem
位势问题
1.
Meshless regularized local boundary integral equation method to 2D potential problems;
二维位势问题中的正则局部边界积分方程方法
2.
By applying fast multipole expansion,the boundary integral equation about 3D potential problem is made discrete.
应用快速多极展开法将三维位势问题的边界方程离散。
3.
A general algorithm is applied to the regularization of nearly singular integrals in the boundary element method of planar potential problems.
将一种通用算法应用于平面位势问题边界元法中近边界点几乎奇异积分的正则化· 对线性单元,位势问题近边界点的几乎强和超奇异积分可归纳为两种形式· 通过分部积分,将引起奇异的积分元素变换到积分号之外,从而对这两种积分分别给出了无奇异的正则化计算公式· 除了线性元,二次元也应用于该算法· 与近边界点临近的二次单元划分为两段线性单元,该算法仍然适用· 算例证明了方法的有效性和精确性· 对曲线边界问题,联合二次元和线性元可提高计算结果精确度·
4) potential problems
位势问题
1.
An kind of non-singular boundary integral method for plane potential problems;
平面位势问题中一种非奇异边界积分法
2.
Analytical algorithm of the nearly singular integrals in boundary element method to anisotropic potential problems;
各向异性位势问题边界元法中几乎奇异积分的解析算法
3.
A set of new direct and analytical integral formulas are deduced with integration by parts to evaluate the nearly singular integrals in the BEM of 2D orthotropic potential problems, where the nearly singular integrals are computed exactly over the linear elements, computed approximately over the quadratic element subdivided into several linear elements.
本文针对二维正交各向异性位势问题边界元法中近边界点的几乎奇异积分,采用分部积分法,导出一种直接的解析计算公式。
5) two-dimensional problem
二维问题
1.
State space solution of the two-dimensional problem in smart Materials
智能材料二维问题的状态空间解
6) two-dimensional vectorial Sturm-Liouville problem
二维SturmLiouville问题
补充资料:断裂力学中的二维问题
断裂力学中的二维问题
wo- dfanensional problems in fracture mechanics
If{Q(。)+iq(:):,二。‘,,,、。。,,、二 兀艺〔t一t”、“一’+2 19(t)」dt+kZ(t,t’)Q(t)dt}=尸(t‘),t’〔L, (A3)其中,积分核分别由下式给出: ld,。、,一二、、 k(t.亡‘)=-于一一In}(t一t‘)(亡一t’)1; 2 dt’一L、 1 Jf。一。,飞 k。ft.t’、二一于书二一!一卜 2 dtLt一t’J方程(A3)有解,它存在于L两端点处具有可积奇异性的函数类中,且在下面补充条件下是唯一的: 丁g,(:)过。一。,(、) L这保证在跟踪L一周时位移的单值性. 应力和位移在裂纹尖端附近的分布由应力强度因子K:(在对称的情况)和K:(在反对称的情况)来决定.应力强度因子与函数g(t)的关系如下: K亨一iK言一干,蟀[V万面不万厂下。‘(‘)],其中上标为“一”的值指裂纹起始点(C一1一);上标为“十”的值指裂纹终止点(C=l+). 对于在弹性平面中有N条曲线裂纹L。(n=1,…,N)的情况,边值问题(AI)也可化为积分方程(A2),其中L为全部回线L。的集合,但条件(A4)应代之以N个类似的条件,以保证位移在每个回线L。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条