1) degenerate parabolic regularized method
退缩抛物方程正则化方法
2) degenerate parabolic equation
退缩抛物型方程
1.
Quenching for singular and degenerate parabolic equation;
含奇异项的退缩抛物型方程解的猝灭现象
2.
The relation about the existence of solution and initial condition for Cauchy problem of a singular and degenerate parabolic equation is considered.
考虑了含奇异项的退缩抛物型方程柯西问题解的存在性与初始条件的关系 ,证明了在初值较小时解是全局存在的 ,在初值较大时解会在有限时刻产生猝灭现
3.
The existence and blow-up of a class degenerate parabolic equation on semi-infinite space is considered.
讨论半无界空间上退缩抛物型方程解的存在性与爆破性质。
4) Degenerate parabolic systems
退缩抛物方程组
1.
A class degenerate parabolic systems is considered.
讨论一类退缩抛物方程组的局部存在性与爆破性,证明在一定条件下解在有限时刻爆破,给出爆破时间的一个上限估计。
5) degenerate parabolic system
退化抛物方程组
1.
Global existence and blow-up of solutions to quasilinear degenerate parabolic system;
拟线性退化抛物方程组解的整体存在和有限爆破
2.
This paper deals with a degenerate parabolic system with nonlocal sources.
本文讨论一类具有非局部源退化抛物方程组。
3.
this paper investigates the uniquenes S Of solutions with compact support of a boundary value problem which comes from t He study of asymptotic behavior of blow up solution of the degenerate parabolic System.
研究一个来源于研究退化抛物方程组的渐近性而产生的常微分方程组 。
6) degenerate parabolic equations
退化抛物方程
1.
We define the renormlized entropy solutions of quasilinear anisotropic degenerate parabolic equations with explicit (t,x)-dependence:where a(u, t, x) = (a_(ij)(u, t,x)) = σ(u, t, x)σ(u, t, x)~T is nonnegtive definit.
针对带时间空间扩散参数的拟线性各向异性退化抛物方程: a_tu+div f(u,t,x)=div(a(u,t,x)▽u)+F(u,t,x) u(0,x)=u_0(x)∈L~1(R~d)其中a(u,t,x)=(a_(ij)(u,t,x))=σ(u,t,x)σ(u,t,x)~T是非负有限的,我们定义了其熵解和重整化熵解,并且证明了柯西问题 a_tu=div(a(u)▽u),u(0,x)=u_0(x)∈L~1(R~d)的重整化熵解的存在性和唯一性。
补充资料:物则
1.事物的法则。
说明:补充资料仅用于学习参考,请勿用于其它任何用途。
参考词条